These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


649 related items for PubMed ID: 17428500

  • 1. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M, Ito N, Tsumuraya T, Suzuki K, Sakakura M, Fujii I.
    J Mol Biol; 2007 May 25; 369(1):198-209. PubMed ID: 17428500
    [Abstract] [Full Text] [Related]

  • 2. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis.
    Sakakura M, Takahashi H, Shimba N, Fujii I, Shimada I.
    J Mol Biol; 2007 Mar 16; 367(1):133-47. PubMed ID: 17239396
    [Abstract] [Full Text] [Related]

  • 3. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O, Vassylyev DG, Tanaka F, Morikawa K, Fujii I.
    J Mol Biol; 1998 Aug 21; 281(3):501-11. PubMed ID: 9698565
    [Abstract] [Full Text] [Related]

  • 4. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I.
    J Mol Biol; 1997 Apr 18; 267(5):1247-57. PubMed ID: 9150409
    [Abstract] [Full Text] [Related]

  • 5. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N, Kakinuma H, Fujii I, Nishi Y.
    J Immunol Methods; 2004 Nov 18; 294(1-2):1-14. PubMed ID: 15604011
    [Abstract] [Full Text] [Related]

  • 6. Molecular mechanisms of improvement of hydrolytic antibody 6D9 by site-directed mutagenesis.
    Takahashi-Ando N, Shimazaki K, Kakinuma H, Fujii I, Nishi Y.
    J Biochem; 2006 Oct 18; 140(4):509-15. PubMed ID: 16921165
    [Abstract] [Full Text] [Related]

  • 7. Effects of substrate conformational strain on binding kinetics of catalytic antibodies.
    Oda M, Tsumuraya T, Fujii I.
    Biophys Physicobiol; 2016 Oct 18; 13():135-138. PubMed ID: 27924267
    [Abstract] [Full Text] [Related]

  • 8. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA, Heine A, Crane L, Cravatt BF, Lerner RA, Wilson IA.
    J Mol Biol; 2001 Nov 16; 314(1):93-102. PubMed ID: 11724535
    [Abstract] [Full Text] [Related]

  • 9. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM, Olender EH, Arvai AS, Koike CK, Canestrelli IL, Stewart JD, Benkovic SJ, Getzoff ED, Roberts VA.
    J Mol Biol; 1999 Aug 13; 291(2):329-45. PubMed ID: 10438624
    [Abstract] [Full Text] [Related]

  • 10. Crossreactivity, efficiency and catalytic specificity of an esterase-like antibody.
    Gigant B, Charbonnier JB, Eshhar Z, Green BS, Knossow M.
    J Mol Biol; 1998 Dec 04; 284(3):741-50. PubMed ID: 9826512
    [Abstract] [Full Text] [Related]

  • 11. In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Takahashi N, Kakinuma H, Liu L, Nishi Y, Fujii I.
    Nat Biotechnol; 2001 Jun 04; 19(6):563-7. PubMed ID: 11385462
    [Abstract] [Full Text] [Related]

  • 12. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ, Houk KN.
    J Comput Chem; 2002 Jan 15; 23(1):84-95. PubMed ID: 11913392
    [Abstract] [Full Text] [Related]

  • 13. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA, de Prada P, Deng SX, Mittal A, Braskett M, Zhu X, Wilson IA, Landry DW.
    Biochemistry; 2004 Jun 29; 43(25):8067-76. PubMed ID: 15209502
    [Abstract] [Full Text] [Related]

  • 14. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface.
    Lin Y, Tsumuraya T, Wakabayashi T, Shiraga S, Fujii I, Kondo A, Ueda M.
    Appl Microbiol Biotechnol; 2003 Aug 29; 62(2-3):226-32. PubMed ID: 12883868
    [Abstract] [Full Text] [Related]

  • 15. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC, Hanson MA, Varvak A, Ulrich H, Schultz PG, Stevens RC.
    Biochemistry; 2000 Feb 01; 39(4):627-32. PubMed ID: 10651626
    [Abstract] [Full Text] [Related]

  • 16. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K, Zhou B, Houk KN, Lerner RA, Shevlin CG, Wilson IA.
    Biochemistry; 1999 Jun 01; 38(22):7062-74. PubMed ID: 10353817
    [Abstract] [Full Text] [Related]

  • 17. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL, Peterson KM, Srivastava DK.
    Biochemistry; 1998 Sep 08; 37(36):12659-71. PubMed ID: 9730839
    [Abstract] [Full Text] [Related]

  • 18. Diverse structural solutions to catalysis in a family of antibodies.
    Gigant B, Tsumuraya T, Fujii I, Knossow M.
    Structure; 1999 Nov 15; 7(11):1385-93. PubMed ID: 10574796
    [Abstract] [Full Text] [Related]

  • 19. Complete reaction cycle of a cocaine catalytic antibody at atomic resolution.
    Zhu X, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA.
    Structure; 2006 Feb 15; 14(2):205-16. PubMed ID: 16472740
    [Abstract] [Full Text] [Related]

  • 20. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP, Hilvert D.
    J Am Chem Soc; 2005 Feb 02; 127(4):1307-12. PubMed ID: 15669871
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.