These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 17428605

  • 21. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.
    GilPavas E, Molina-Tirado K, Gómez-García MA.
    Water Sci Technol; 2009; 60(10):2581-8. PubMed ID: 19923764
    [Abstract] [Full Text] [Related]

  • 22. A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light.
    Muruganandham M, Selvam K, Swaminathan M.
    J Hazard Mater; 2007 Jun 01; 144(1-2):316-22. PubMed ID: 17125921
    [Abstract] [Full Text] [Related]

  • 23. Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics.
    Parsa JB, Rezaei M, Soleymani AR.
    J Hazard Mater; 2009 Sep 15; 168(2-3):997-1003. PubMed ID: 19345003
    [Abstract] [Full Text] [Related]

  • 24. Decolorization of reactive bright red K2G dye: electrochemical process catalyzed by manganese mineral.
    Liu HJ, Qu JH.
    Water Sci Technol; 2002 Sep 15; 46(11-12):133-8. PubMed ID: 12523744
    [Abstract] [Full Text] [Related]

  • 25. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.
    Sridhar R, Sivakumar V, Prince Immanuel V, Prakash Maran J.
    J Hazard Mater; 2011 Feb 28; 186(2-3):1495-502. PubMed ID: 21227578
    [Abstract] [Full Text] [Related]

  • 26. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.
    Farhadi S, Aminzadeh B, Torabian A, Khatibikamal V, Alizadeh Fard M.
    J Hazard Mater; 2012 Jun 15; 219-220():35-42. PubMed ID: 22464981
    [Abstract] [Full Text] [Related]

  • 27. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study.
    Yetilmezsoy K, Ilhan F, Sapci-Zengin Z, Sakar S, Gonullu MT.
    J Hazard Mater; 2009 Feb 15; 162(1):120-32. PubMed ID: 18554794
    [Abstract] [Full Text] [Related]

  • 28. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process.
    Daneshvar N, Khataee AR, Djafarzadeh N.
    J Hazard Mater; 2006 Oct 11; 137(3):1788-95. PubMed ID: 16806684
    [Abstract] [Full Text] [Related]

  • 29. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode.
    Tsantaki E, Velegraki T, Katsaounis A, Mantzavinos D.
    J Hazard Mater; 2012 Mar 15; 207-208():91-6. PubMed ID: 21530081
    [Abstract] [Full Text] [Related]

  • 30. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R, Bindu VH, Rao AV, Anjaneyulu Y.
    J Environ Sci Eng; 2008 Oct 15; 50(4):283-8. PubMed ID: 19697763
    [Abstract] [Full Text] [Related]

  • 31. Response surface optimization of electrochemical treatment of textile dye wastewater.
    Körbahti BK.
    J Hazard Mater; 2007 Jun 25; 145(1-2):277-86. PubMed ID: 17184910
    [Abstract] [Full Text] [Related]

  • 32. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I, Kabdaşli I, Vardar B, Tünay O.
    J Hazard Mater; 2009 May 30; 164(2-3):1586-94. PubMed ID: 18849115
    [Abstract] [Full Text] [Related]

  • 33. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study.
    Khataee AR, Vatanpour V, Amani Ghadim AR.
    J Hazard Mater; 2009 Jan 30; 161(2-3):1225-33. PubMed ID: 18524478
    [Abstract] [Full Text] [Related]

  • 34. Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption.
    Chou WL, Wang CT, Chang SY.
    J Hazard Mater; 2009 Sep 15; 168(2-3):1200-7. PubMed ID: 19342168
    [Abstract] [Full Text] [Related]

  • 35. Ozonation of exhausted dark shade reactive dye bath for reuse.
    Sundrarajan M, Vishnu G, Joseph K.
    J Environ Sci Eng; 2006 Oct 15; 48(4):285-92. PubMed ID: 18179124
    [Abstract] [Full Text] [Related]

  • 36. Ozonation of tannery effluent for removal of cod and color.
    Preethi V, Kalyani KS, Iyappan K, Srinivasakannan C, Balasubramaniam N, Vedaraman N.
    J Hazard Mater; 2009 Jul 15; 166(1):150-4. PubMed ID: 19118944
    [Abstract] [Full Text] [Related]

  • 37. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.
    Zidane F, Drogui P, Lekhlif B, Bensaid J, Blais JF, Belcadi S, El Kacemi K.
    J Hazard Mater; 2008 Jun 30; 155(1-2):153-63. PubMed ID: 18155356
    [Abstract] [Full Text] [Related]

  • 38. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater.
    Yi F, Chen S, Yuan C.
    J Hazard Mater; 2008 Aug 30; 157(1):79-87. PubMed ID: 18258359
    [Abstract] [Full Text] [Related]

  • 39. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.
    Chou WL, Wang CT, Huang KY.
    J Hazard Mater; 2009 Aug 15; 167(1-3):467-74. PubMed ID: 19203835
    [Abstract] [Full Text] [Related]

  • 40. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst.
    Kondru AK, Kumar P, Chand S.
    J Hazard Mater; 2009 Jul 15; 166(1):342-7. PubMed ID: 19135790
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.