These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


588 related items for PubMed ID: 17428911

  • 21. Neurons in V1, V2, and PMLS of cat cortex are speed tuned but not acceleration tuned: the influence of motion adaptation.
    Price NS, Crowder NA, Hietanen MA, Ibbotson MR.
    J Neurophysiol; 2006 Feb; 95(2):660-73. PubMed ID: 16177174
    [Abstract] [Full Text] [Related]

  • 22. Cross-orientation suppression: monoptic and dichoptic mechanisms are different.
    Li B, Peterson MR, Thompson JK, Duong T, Freeman RD.
    J Neurophysiol; 2005 Aug; 94(2):1645-50. PubMed ID: 15843483
    [Abstract] [Full Text] [Related]

  • 23. Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus.
    Nagy A, Paróczy Z, Márkus Z, Berényi A, Wypych M, Waleszczyk WJ, Benedek G.
    Eur J Neurosci; 2008 Apr; 27(7):1801-8. PubMed ID: 18371085
    [Abstract] [Full Text] [Related]

  • 24. Spatial summation processes in the receptive fields of visually driven neurons of the cat's cortical area 21a.
    Harutiunian-Kozak BA, Sharanbekian AB, Kazarian AL, Grigorian GG, Kozak JA, Sarkisyan GS, Khachvankian DK.
    Arch Ital Biol; 2006 Aug; 144(3-4):127-44. PubMed ID: 16977829
    [Abstract] [Full Text] [Related]

  • 25. Dynamics of spatial resolution of single units in the lateral geniculate nucleus of cat during brief visual stimulation.
    Ruksenas O, Bulatov A, Heggelund P.
    J Neurophysiol; 2007 Feb; 97(2):1445-56. PubMed ID: 16914606
    [Abstract] [Full Text] [Related]

  • 26. Direction selectivity of neurons in the striate cortex increases as stimulus contrast is decreased.
    Peterson MR, Li B, Freeman RD.
    J Neurophysiol; 2006 Apr; 95(4):2705-12. PubMed ID: 16306177
    [Abstract] [Full Text] [Related]

  • 27. Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex.
    Marshansky S, Shumikhina S, Molotchnikoff S.
    Neuroscience; 2011 Jan 13; 172():355-65. PubMed ID: 20969932
    [Abstract] [Full Text] [Related]

  • 28. Spatial receptive field properties of lateral geniculate cells in the owl monkey (Aotus azarae) at different contrasts: a comparative study.
    Kilavik BE, Silveira LC, Kremers J.
    Eur J Neurosci; 2007 Aug 13; 26(4):992-1006. PubMed ID: 17714192
    [Abstract] [Full Text] [Related]

  • 29. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT, Dumoulin SO, Hess RF.
    Eur J Neurosci; 2008 Nov 13; 28(9):1911-23. PubMed ID: 18973604
    [Abstract] [Full Text] [Related]

  • 30. Brainstem input modulates globally the transmission through the lateral geniculate nucleus.
    Ozaki T, Kaplan E.
    Int J Neurosci; 2006 Mar 13; 116(3):247-64. PubMed ID: 16484052
    [Abstract] [Full Text] [Related]

  • 31. [Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging].
    Yu HB, Shou TD.
    Sheng Li Xue Bao; 2000 Oct 13; 52(5):411-5. PubMed ID: 11941397
    [Abstract] [Full Text] [Related]

  • 32. Contrast dependence of suppressive influences in cortical area MT of alert macaque.
    Pack CC, Hunter JN, Born RT.
    J Neurophysiol; 2005 Mar 13; 93(3):1809-15. PubMed ID: 15483068
    [Abstract] [Full Text] [Related]

  • 33. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J, Ardila Jimenez SC, Chakraborty S, Schultz SR.
    PLoS One; 2016 Mar 13; 11(1):e0146017. PubMed ID: 26741374
    [Abstract] [Full Text] [Related]

  • 34. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD, Heimel JA, Nelson SB.
    Prog Brain Res; 2005 Mar 13; 149():127-45. PubMed ID: 16226581
    [Abstract] [Full Text] [Related]

  • 35. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat.
    Tardif E, Bergeron A, Lepore F, Guillemot JP.
    Brain Res; 1996 Apr 15; 716(1-2):219-23. PubMed ID: 8738243
    [Abstract] [Full Text] [Related]

  • 36. Temporal dynamics of binocular disparity processing in the central visual pathway.
    Menz MD, Freeman RD.
    J Neurophysiol; 2004 Apr 15; 91(4):1782-93. PubMed ID: 14668292
    [Abstract] [Full Text] [Related]

  • 37. A retinal source of spatial contrast gain control.
    Scholl B, Latimer KW, Priebe NJ.
    J Neurosci; 2012 Jul 18; 32(29):9824-30. PubMed ID: 22815497
    [Abstract] [Full Text] [Related]

  • 38. Contrast adaptation in cat lateral geniculate nucleus and influence of corticothalamic feedback.
    Li G, Ye X, Song T, Yang Y, Zhou Y.
    Eur J Neurosci; 2011 Aug 18; 34(4):622-31. PubMed ID: 21749496
    [Abstract] [Full Text] [Related]

  • 39. Origins of cross-orientation suppression in the visual cortex.
    Li B, Thompson JK, Duong T, Peterson MR, Freeman RD.
    J Neurophysiol; 2006 Oct 18; 96(4):1755-64. PubMed ID: 16855109
    [Abstract] [Full Text] [Related]

  • 40. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena.
    Jehee JF, Roelfsema PR, Deco G, Murre JM, Lamme VA.
    Brain Res; 2007 Jul 09; 1157():167-76. PubMed ID: 17540349
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 30.