These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


657 related items for PubMed ID: 17429483

  • 1. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ, Choi SS, Jones SM, Oliver SS, Werner JS.
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [Abstract] [Full Text] [Related]

  • 2. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
    Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG.
    Opt Express; 2008 Sep 15; 16(19):15149-69. PubMed ID: 18795054
    [Abstract] [Full Text] [Related]

  • 3. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm.
    Srinivasan VJ, Huber R, Gorczynska I, Fujimoto JG, Jiang JY, Reisen P, Cable AE.
    Opt Lett; 2007 Feb 15; 32(4):361-3. PubMed ID: 17356653
    [Abstract] [Full Text] [Related]

  • 4. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
    Bigelow CE, Iftimia NV, Ferguson RD, Ustun TE, Bloom B, Hammer DX.
    J Opt Soc Am A Opt Image Sci Vis; 2007 May 15; 24(5):1327-36. PubMed ID: 17429478
    [Abstract] [Full Text] [Related]

  • 5. Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging.
    Cucu RG, Podoleanu AG, Rogers JA, Pedro J, Rosen RB.
    Opt Lett; 2006 Jun 01; 31(11):1684-6. PubMed ID: 16688261
    [Abstract] [Full Text] [Related]

  • 6. Adaptive optics retinal scanner for one-micrometer light source.
    Kurokawa K, Tamada D, Makita S, Yasuno Y.
    Opt Express; 2010 Jan 18; 18(2):1406-18. PubMed ID: 20173968
    [Abstract] [Full Text] [Related]

  • 7. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.
    Zawadzki RJ, Cense B, Zhang Y, Choi SS, Miller DT, Werner JS.
    Opt Express; 2008 May 26; 16(11):8126-43. PubMed ID: 18545525
    [Abstract] [Full Text] [Related]

  • 8. Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
    Wanek JM, Mori M, Shahidi M.
    J Opt Soc Am A Opt Image Sci Vis; 2007 May 26; 24(5):1296-304. PubMed ID: 17429475
    [Abstract] [Full Text] [Related]

  • 9. Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head.
    Kim DY, Werner JS, Zawadzki RJ.
    J Biomed Opt; 2012 Dec 26; 17(12):126005. PubMed ID: 23208216
    [Abstract] [Full Text] [Related]

  • 10. Correcting intra-volume distortion for AO-OCT using 3D correlation based registration.
    Li Z, Pandiyan VP, Maloney-Bertelli A, Jiang X, Li X, Sabesan R.
    Opt Express; 2020 Dec 07; 28(25):38390-38409. PubMed ID: 33379652
    [Abstract] [Full Text] [Related]

  • 11. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system.
    Luo W, Marks DL, Ralston TS, Boppart SA.
    J Biomed Opt; 2006 Dec 07; 11(2):021014. PubMed ID: 16674189
    [Abstract] [Full Text] [Related]

  • 12. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS.
    Ophthalmology; 2005 Oct 07; 112(10):1734-46. PubMed ID: 16140383
    [Abstract] [Full Text] [Related]

  • 13. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.
    Mujat M, Park BH, Cense B, Chen TC, de Boer JF.
    J Biomed Opt; 2007 Oct 07; 12(4):041205. PubMed ID: 17867794
    [Abstract] [Full Text] [Related]

  • 14. Multiscan time-domain optical coherence tomography for retina imaging.
    Rosa CC, Rogers J, Pedro J, Rosen R, Podoleanu A.
    Appl Opt; 2007 Apr 01; 46(10):1795-808. PubMed ID: 17356624
    [Abstract] [Full Text] [Related]

  • 15. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries.
    Kang JU, Huang Y, Zhang K, Ibrahim Z, Cha J, Lee WP, Brandacher G, Gehlbach PL.
    J Biomed Opt; 2012 Aug 01; 17(8):081403-1. PubMed ID: 23224164
    [Abstract] [Full Text] [Related]

  • 16. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ, Fuller AR, Wiley DF, Hamann B, Choi SS, Werner JS.
    J Biomed Opt; 2007 Aug 01; 12(4):041206. PubMed ID: 17867795
    [Abstract] [Full Text] [Related]

  • 17. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography.
    Zawadzki RJ, Choi SS, Fuller AR, Evans JW, Hamann B, Werner JS.
    Opt Express; 2009 Mar 02; 17(5):4084-94. PubMed ID: 19259248
    [Abstract] [Full Text] [Related]

  • 18. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.
    Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG.
    Invest Ophthalmol Vis Sci; 2008 Nov 02; 49(11):5103-10. PubMed ID: 18658089
    [Abstract] [Full Text] [Related]

  • 19. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers.
    Adler DC, Huber R, Fujimoto JG.
    Opt Lett; 2007 Mar 15; 32(6):626-8. PubMed ID: 17308582
    [Abstract] [Full Text] [Related]

  • 20. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging.
    Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA, Izatt JA, Choi S, Laut S, Werner JS.
    Opt Express; 2005 Oct 17; 13(21):8532-8546. PubMed ID: 19096728
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.