These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1062 related items for PubMed ID: 17430995

  • 1. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells.
    Xie Y, Wolff DW, Lin MF, Tu Y.
    Mol Pharmacol; 2007 Jul; 72(1):73-85. PubMed ID: 17430995
    [Abstract] [Full Text] [Related]

  • 2. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M.
    Cancer Res; 2004 Oct 01; 64(19):7156-68. PubMed ID: 15466214
    [Abstract] [Full Text] [Related]

  • 3. Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells.
    Cao X, Qin J, Xie Y, Khan O, Dowd F, Scofield M, Lin MF, Tu Y.
    Oncogene; 2006 Jun 22; 25(26):3719-34. PubMed ID: 16449965
    [Abstract] [Full Text] [Related]

  • 4. Transactivation of HER2 by vasoactive intestinal peptide in experimental prostate cancer: Antagonistic action of an analog of growth-hormone-releasing hormone.
    Sotomayor S, Carmena MJ, Schally AV, Varga JL, Sánchez-Chapado M, Prieto JC, Bajo AM.
    Int J Oncol; 2007 Nov 22; 31(5):1223-30. PubMed ID: 17912451
    [Abstract] [Full Text] [Related]

  • 5. IGF-I and vasoactive intestinal peptide (VIP) regulate cAMP-response element-binding protein (CREB)-dependent transcription via the mitogen-activated protein kinase (MAPK) pathway in pituitary cells: requirement of Rap1.
    Fernández M, Sánchez-Franco F, Palacios N, Sánchez I, Cacicedo L.
    J Mol Endocrinol; 2005 Jun 22; 34(3):699-712. PubMed ID: 15956341
    [Abstract] [Full Text] [Related]

  • 6. Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K.
    Gutiérrez-Cañas I, Juarranz MG, Collado B, Rodríguez-Henche N, Chiloeches A, Prieto JC, Carmena MJ.
    Prostate; 2005 Apr 01; 63(1):44-55. PubMed ID: 15468165
    [Abstract] [Full Text] [Related]

  • 7. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells.
    Gong J, Zhu J, Goodman OB, Pestell RG, Schlegel PN, Nanus DM, Shen R.
    Oncogene; 2006 Mar 30; 25(14):2011-21. PubMed ID: 16434977
    [Abstract] [Full Text] [Related]

  • 8. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells.
    Zhu ML, Partin JV, Bruckheimer EM, Strup SE, Kyprianou N.
    Prostate; 2008 Feb 15; 68(3):287-95. PubMed ID: 18163430
    [Abstract] [Full Text] [Related]

  • 9. Activation of mitogen-activated protein kinase pathway by the antiandrogen hydroxyflutamide in androgen receptor-negative prostate cancer cells.
    Lee YF, Lin WJ, Huang J, Messing EM, Chan FL, Wilding G, Chang C.
    Cancer Res; 2002 Nov 01; 62(21):6039-44. PubMed ID: 12414626
    [Abstract] [Full Text] [Related]

  • 10. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells.
    Murthy S, Agoulnik IU, Weigel NL.
    Prostate; 2005 Sep 01; 64(4):362-72. PubMed ID: 15754350
    [Abstract] [Full Text] [Related]

  • 11. Regulation of prostate-specific antigen (PSA) gene expression and release in LNCaP prostate cancer by antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide.
    Rekasi Z, Schally AV, Plonowski A, Czompoly T, Csernus B, Varga JL.
    Prostate; 2001 Aug 01; 48(3):188-99. PubMed ID: 11494334
    [Abstract] [Full Text] [Related]

  • 12. Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines.
    Putz T, Culig Z, Eder IE, Nessler-Menardi C, Bartsch G, Grunicke H, Uberall F, Klocker H.
    Cancer Res; 1999 Jan 01; 59(1):227-33. PubMed ID: 9892211
    [Abstract] [Full Text] [Related]

  • 13. Inhibition of MAPK-signaling pathway promotes the interaction of the corepressor SMRT with the human androgen receptor and mediates repression of prostate cancer cell growth in the presence of antiandrogens.
    Eisold M, Asim M, Eskelinen H, Linke T, Baniahmad A.
    J Mol Endocrinol; 2009 May 01; 42(5):429-35. PubMed ID: 19223455
    [Abstract] [Full Text] [Related]

  • 14. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells.
    Recchia AG, Musti AM, Lanzino M, Panno ML, Turano E, Zumpano R, Belfiore A, Andò S, Maggiolini M.
    Int J Biochem Cell Biol; 2009 Mar 01; 41(3):603-14. PubMed ID: 18692155
    [Abstract] [Full Text] [Related]

  • 15. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.
    Hsieh CL, Cai C, Giwa A, Bivins A, Chen SY, Sabry D, Govardhan K, Shemshedini L.
    J Mol Endocrinol; 2008 Jul 01; 41(1):13-23. PubMed ID: 18469090
    [Abstract] [Full Text] [Related]

  • 16. Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate dependent activation of c-Jun NH2-terminal kinase.
    Singh SV, Choi S, Zeng Y, Hahm ER, Xiao D.
    Cancer Res; 2007 Aug 01; 67(15):7439-49. PubMed ID: 17671214
    [Abstract] [Full Text] [Related]

  • 17. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system.
    Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A, Bartsch G, Utermann G, Schneider MR, Parczyk K, Klocker H.
    Br J Cancer; 1999 Sep 01; 81(2):242-51. PubMed ID: 10496349
    [Abstract] [Full Text] [Related]

  • 18. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor.
    Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z.
    Cancer Res; 1998 Oct 15; 58(20):4640-5. PubMed ID: 9788616
    [Abstract] [Full Text] [Related]

  • 19. Ectopic expression of the amino-terminal peptide of androgen receptor leads to androgen receptor dysfunction and inhibition of androgen receptor-mediated prostate cancer growth.
    Minamiguchi K, Kawada M, Ohba S, Takamoto K, Ishizuka M.
    Mol Cell Endocrinol; 2004 Feb 12; 214(1-2):175-87. PubMed ID: 15062556
    [Abstract] [Full Text] [Related]

  • 20. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation.
    Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, O'Sullivan JM, Johnston PG, Waugh DJ.
    Carcinogenesis; 2008 Jun 12; 29(6):1148-56. PubMed ID: 18487223
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.