These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 17433404

  • 1. Uncertainty in prediction of disinfection performance.
    Neumann MB, von Gunten U, Gujer W.
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [Abstract] [Full Text] [Related]

  • 2. Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone.
    Sivaganesan M, Mariñas BJ.
    Water Res; 2005 Jun; 39(11):2429-37. PubMed ID: 15963550
    [Abstract] [Full Text] [Related]

  • 3. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH, Elovitz MS, von Gunten U, Shukairy HM, Mariñas BJ.
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [Abstract] [Full Text] [Related]

  • 4. A non-biological surrogate for sequential disinfection processes.
    Baeza C, Ducoste J.
    Water Res; 2004 Jan; 38(14-15):3400-10. PubMed ID: 15276757
    [Abstract] [Full Text] [Related]

  • 5. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT, Costa AO, de Oliveira Silva MB, Schuchard W, Osaki SC, de Castro EA, Paulino RC, Soccol VT.
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [Abstract] [Full Text] [Related]

  • 6. A stochastic model of an ozonation reactor.
    Gujer W, von Gunten U.
    Water Res; 2003 Apr; 37(7):1667-77. PubMed ID: 12600396
    [Abstract] [Full Text] [Related]

  • 7. Inactivation of Cryptosporidium parvum oocysts with sequential application of ozone and combined chlorine.
    Rennecker JL, Corona-Vasquez B, Driedger AM, Rubin SA, Mariñas BJ.
    Water Sci Technol; 2001 Apr; 43(12):167-70. PubMed ID: 11464747
    [Abstract] [Full Text] [Related]

  • 8. A Bayesian method of estimating kinetic parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide and ozone.
    Sivaganesan M, Rice EW, Mariñas BJ.
    Water Res; 2003 Nov; 37(18):4533-43. PubMed ID: 14511724
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Quantitative evaluation and application of Cryptosporidium parvum inactivation with ozone treatment.
    Cho M, Yoon J.
    Water Sci Technol; 2007 Nov; 55(1-2):241-50. PubMed ID: 17305146
    [Abstract] [Full Text] [Related]

  • 11. The efficiency of ozonated water from a water treatment plant to inactivate Cryptosporidium oocysts during two seasonal temperatures.
    Wohlsen T, Stewart S, Aldridge P, Bates J, Gray B, Katouli M.
    J Water Health; 2007 Sep; 5(3):433-40. PubMed ID: 17878558
    [Abstract] [Full Text] [Related]

  • 12. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water.
    Biswas K, Craik S, Smith DW, Belosevic M.
    Water Res; 2003 Nov; 37(19):4737-47. PubMed ID: 14568061
    [Abstract] [Full Text] [Related]

  • 13. Characterization of drinking water treatment for virus risk assessment.
    Teunis PF, Rutjes SA, Westrell T, de Roda Husman AM.
    Water Res; 2009 Feb; 43(2):395-404. PubMed ID: 19036398
    [Abstract] [Full Text] [Related]

  • 14. [The efficacy of water ozonation on the inactivation of oocysts of Cryptosporidium].
    Perrine D, Georges P, Langlais B.
    Bull Acad Natl Med; 1990 Feb; 174(6):845-50; discussion 850-1. PubMed ID: 2271989
    [Abstract] [Full Text] [Related]

  • 15. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step.
    Choi Y, Cho M, Lee Y, Choi J, Yoon J.
    Chemosphere; 2007 Oct; 69(5):675-81. PubMed ID: 17604815
    [Abstract] [Full Text] [Related]

  • 16. Global sensitivity analysis for model-based prediction of oxidative micropollutant transformation during drinking water treatment.
    Neumann MB, Gujer W, von Gunten U.
    Water Res; 2009 Mar; 43(4):997-1004. PubMed ID: 19110290
    [Abstract] [Full Text] [Related]

  • 17. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone.
    Craik SA, Smith DW, Chandrakanth M, Belosevic M.
    Water Res; 2003 Sep; 37(15):3622-31. PubMed ID: 12867328
    [Abstract] [Full Text] [Related]

  • 18. Using ultraviolet light for disinfection of finished water.
    Bukhari Z, Abrams F, LeChevallier M.
    Water Sci Technol; 2004 Sep; 50(1):173-8. PubMed ID: 15318505
    [Abstract] [Full Text] [Related]

  • 19. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K, Craik S, Smith DW, Belosevic M.
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [Abstract] [Full Text] [Related]

  • 20. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ, Hoefel D, Daminato DP, Fanok S, Monis PT.
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.