These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 17433537
61. Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. Cemin A, Ferrarini F, Poletto M, Bonetto LR, Bortoluz J, Lemée L, Guégan R, Esteves VI, Giovanela M. Int J Biol Macromol; 2021 Feb 15; 170():375-389. PubMed ID: 33359804 [Abstract] [Full Text] [Related]
62. Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Janos P, Coskun S, Pilarová V, Rejnek J. Bioresour Technol; 2009 Feb 15; 100(3):1450-3. PubMed ID: 18848777 [Abstract] [Full Text] [Related]
63. Removal of hazardous dye congored from waste material. Jain R, Sikarwar S. J Hazard Mater; 2008 Apr 15; 152(3):942-8. PubMed ID: 17825987 [Abstract] [Full Text] [Related]
64. Mathematical modeling for the evaluation of zinc removal efficiency on clay sorbent. Sarkar M, Sarkar AR, Goswami JL. J Hazard Mater; 2007 Nov 19; 149(3):666-74. PubMed ID: 17532561 [Abstract] [Full Text] [Related]
65. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes. Sharma RK, Kumar A, Joseph PE. Bull Environ Contam Toxicol; 2008 May 19; 80(5):461-4. PubMed ID: 18357400 [Abstract] [Full Text] [Related]
67. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y. J Hazard Mater; 2009 May 30; 164(2-3):1517-22. PubMed ID: 18977077 [Abstract] [Full Text] [Related]
68. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Hameed BH, Ahmad AA. J Hazard Mater; 2009 May 30; 164(2-3):870-5. PubMed ID: 18838221 [Abstract] [Full Text] [Related]
69. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya). Mittal A, Gupta VK, Malviya A, Mittal J. J Hazard Mater; 2008 Mar 01; 151(2-3):821-32. PubMed ID: 17659833 [Abstract] [Full Text] [Related]
70. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Nunes AA, Franca AS, Oliveira LS. Bioresour Technol; 2009 Mar 01; 100(5):1786-92. PubMed ID: 18996006 [Abstract] [Full Text] [Related]
71. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. Bulut E, Ozacar M, Sengil IA. J Hazard Mater; 2008 Jun 15; 154(1-3):613-22. PubMed ID: 18055111 [Abstract] [Full Text] [Related]
74. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant. Liu R, Liu H, Zhao X, Qu J, Zhang R. J Hazard Mater; 2010 Apr 15; 176(1-3):926-31. PubMed ID: 20031306 [Abstract] [Full Text] [Related]
75. Fixed bed column study for heavy metal removal using phosphate treated rice husk. Mohan S, Sreelakshmi G. J Hazard Mater; 2008 May 01; 153(1-2):75-82. PubMed ID: 17897779 [Abstract] [Full Text] [Related]
76. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk. Kumar U, Bandyopadhyay M. J Hazard Mater; 2006 Feb 28; 129(1-3):253-9. PubMed ID: 16219420 [Abstract] [Full Text] [Related]
79. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis. S S, P SK, A S, P SR, C R. Environ Toxicol Pharmacol; 2017 Mar 28; 50():45-57. PubMed ID: 28131076 [Abstract] [Full Text] [Related]