These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 17439153

  • 21. Isolation and identification of lutein esters, including their regioisomers, in tritordeum (×Tritordeum Ascherson et Graebner) grains: Evidence for a preferential xanthophyll acyltransferase activity.
    Mellado-Ortega E, Hornero-Méndez D.
    Food Chem; 2012 Dec 01; 135(3):1344-52. PubMed ID: 22953864
    [Abstract] [Full Text] [Related]

  • 22. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging.
    Calucci L, Capocchi A, Galleschi L, Ghiringhelli S, Pinzino C, Saviozzi F, Zandomeneghi M.
    J Agric Food Chem; 2004 Jun 30; 52(13):4274-81. PubMed ID: 15212480
    [Abstract] [Full Text] [Related]

  • 23. Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain.
    Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Böhm V, Bitsch R.
    J Agric Food Chem; 2002 Nov 06; 50(23):6663-8. PubMed ID: 12405758
    [Abstract] [Full Text] [Related]

  • 24. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements.
    Fratianni A, Irano M, Panfili G, Acquistucci R.
    J Agric Food Chem; 2005 Apr 06; 53(7):2373-8. PubMed ID: 15796565
    [Abstract] [Full Text] [Related]

  • 25. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals.
    Panfili G, Fratianni A, Irano M.
    J Agric Food Chem; 2004 Oct 20; 52(21):6373-7. PubMed ID: 15478994
    [Abstract] [Full Text] [Related]

  • 26. The breeder's tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes.
    Rodríguez-Suárez C, Requena-Ramírez MD, Hornero-Méndez D, Atienza SG.
    Methods Enzymol; 2022 Oct 20; 671():99-125. PubMed ID: 35878995
    [Abstract] [Full Text] [Related]

  • 27. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites.
    Ziegler JU, Wahl S, Würschum T, Longin CF, Carle R, Schweiggert RM.
    J Agric Food Chem; 2015 May 27; 63(20):5061-71. PubMed ID: 25946219
    [Abstract] [Full Text] [Related]

  • 28. Distribution of bioactive compounds in pearled fractions of tritordeum.
    Giordano D, Reyneri A, Locatelli M, Coïsson JD, Blandino M.
    Food Chem; 2019 Dec 15; 301():125228. PubMed ID: 31377613
    [Abstract] [Full Text] [Related]

  • 29. Development of a new method for the complete extraction of carotenoids from cereals with special reference to durum wheat (Triticum durum Desf.).
    Burkhardt S, Böhm V.
    J Agric Food Chem; 2007 Oct 17; 55(21):8295-301. PubMed ID: 17874841
    [Abstract] [Full Text] [Related]

  • 30. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification.
    Fernandez-Orozco R, Gallardo-Guerrero L, Hornero-Méndez D.
    Food Chem; 2013 Dec 01; 141(3):2864-72. PubMed ID: 23871035
    [Abstract] [Full Text] [Related]

  • 31. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking.
    Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C.
    J Agric Food Chem; 2006 Mar 08; 54(5):1710-5. PubMed ID: 16506823
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm.
    Chander S, Meng Y, Zhang Y, Yan J, Li J.
    J Agric Food Chem; 2008 Aug 13; 56(15):6506-11. PubMed ID: 18620402
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption.
    Hussain A, Larsson H, Kuktaite R, Olsson ME, Johansson E.
    Int J Environ Res Public Health; 2015 Nov 02; 12(11):14068-83. PubMed ID: 26540066
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Marker-Trait Associations for Total Carotenoid Content and Individual Carotenoids in Durum Wheat Identified by Genome-Wide Association Analysis.
    Requena-Ramírez MD, Rodríguez-Suárez C, Flores F, Hornero-Méndez D, Atienza SG.
    Plants (Basel); 2022 Aug 07; 11(15):. PubMed ID: 35956543
    [Abstract] [Full Text] [Related]

  • 38. A comparison of phenotypic variation in Triticum durum Desf. genotypes deposited in gene banks based on the shape and color descriptors of kernels in a digital image analysis.
    Suchowilska E, Wiwart M, Wachowska U, Radawiec W, Combrzyński M, Gontarz D.
    PLoS One; 2022 Aug 07; 17(2):e0259413. PubMed ID: 35176021
    [Abstract] [Full Text] [Related]

  • 39. Alkylresorcinols in wheat varieties in the HEALTHGRAIN Diversity Screen.
    Andersson AA, Kamal-Eldin A, Fraś A, Boros D, Aman P.
    J Agric Food Chem; 2008 Nov 12; 56(21):9722-5. PubMed ID: 18921971
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.