These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 17443386

  • 1. Evolution of hyperactive, repetitive antifreeze proteins in beetles.
    Graham LA, Qin W, Lougheed SC, Davies PL, Walker VK.
    J Mol Evol; 2007 Apr; 64(4):387-98. PubMed ID: 17443386
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Positive darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family.
    Swanson WJ, Aquadro CF.
    J Mol Evol; 2002 Mar; 54(3):403-10. PubMed ID: 11847566
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG.
    Annu Rev Physiol; 2001 Mar; 63():327-57. PubMed ID: 11181959
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H.
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Crystal structure of beta-helical antifreeze protein points to a general ice binding model.
    Leinala EK, Davies PL, Jia Z.
    Structure; 2002 May; 10(5):619-27. PubMed ID: 12015145
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicola.
    Jung W, Gwak Y, Davies PL, Kim HJ, Jin E.
    Mar Biotechnol (NY); 2014 Oct; 16(5):502-12. PubMed ID: 24609978
    [Abstract] [Full Text] [Related]

  • 13. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin.
    Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S.
    Int J Mol Sci; 2021 Mar 31; 22(7):. PubMed ID: 33807342
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax.
    Friis DS, Kristiansen E, von Solms N, Ramløv H.
    FEBS Lett; 2014 May 02; 588(9):1767-72. PubMed ID: 24681101
    [Abstract] [Full Text] [Related]

  • 17. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix.
    Lin FH, Davies PL, Graham LA.
    Biochemistry; 2011 May 31; 50(21):4467-78. PubMed ID: 21486083
    [Abstract] [Full Text] [Related]

  • 18. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA, Marshall CB, Lin FH, Campbell RL, Davies PL.
    Biochemistry; 2008 Feb 19; 47(7):2051-63. PubMed ID: 18225917
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects.
    Ma J, Wang J, Mao XF, Wang Y.
    Cryo Letters; 2012 Feb 19; 33(5):337-48. PubMed ID: 23224367
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.