These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
366 related items for PubMed ID: 17443792
1. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Telgkamp P, Combs N, Smith GT. Dev Neurobiol; 2007 Feb 15; 67(3):339-54. PubMed ID: 17443792 [Abstract] [Full Text] [Related]
2. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Smith GT, Combs N. Horm Behav; 2008 Jun 15; 54(1):69-82. PubMed ID: 18336816 [Abstract] [Full Text] [Related]
6. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. Zakon H, Oestreich J, Tallarovic S, Triefenbach F. J Physiol Paris; 2002 Jun 15; 96(5-6):451-8. PubMed ID: 14692493 [Abstract] [Full Text] [Related]
8. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens. Dunlap KD, Zakon HH. Horm Behav; 1998 Aug 15; 34(1):30-8. PubMed ID: 9735226 [Abstract] [Full Text] [Related]
11. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. Zupanc GK. J Physiol Paris; 2002 Aug 15; 96(5-6):459-72. PubMed ID: 14692494 [Abstract] [Full Text] [Related]
12. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). Smith GT. J Exp Biol; 2013 Jul 01; 216(Pt 13):2421-33. PubMed ID: 23761467 [Abstract] [Full Text] [Related]
14. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function. Kolodziejski JA, Sanford SE, Smith GT. J Exp Biol; 2007 Jul 01; 210(Pt 14):2501-9. PubMed ID: 17601954 [Abstract] [Full Text] [Related]
15. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish. McAnelly ML, Zakon HH. Dev Neurobiol; 2007 Oct 01; 67(12):1589-97. PubMed ID: 17562532 [Abstract] [Full Text] [Related]
16. Androgen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus. Dulka JG, Maler L, Ellis W. J Neurosci; 1995 Mar 01; 15(3 Pt 1):1879-90. PubMed ID: 7534341 [Abstract] [Full Text] [Related]
17. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia. Keller CH, Maler L, Heiligenberg W. J Comp Neurol; 1990 Mar 15; 293(3):347-76. PubMed ID: 1691214 [Abstract] [Full Text] [Related]
18. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD. Mills A, Zakon HH, Marchaterre MA, Bass AH. J Neurobiol; 1992 Sep 15; 23(7):920-32. PubMed ID: 1431851 [Abstract] [Full Text] [Related]
19. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. Dunlap KD, Thomas P, Zakon HH. J Comp Physiol A; 1998 Jul 15; 183(1):77-86. PubMed ID: 9691480 [Abstract] [Full Text] [Related]
20. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT. J Exp Biol; 2007 Dec 15; 210(Pt 23):4104-22. PubMed ID: 18025011 [Abstract] [Full Text] [Related] Page: [Next] [New Search]