These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


573 related items for PubMed ID: 17445238

  • 1. Constant light housing during nursing causes human DSPS (delayed sleep phase syndrome) behaviour in Clock-mutant mice.
    Wakatsuki Y, Kudo T, Shibata S.
    Eur J Neurosci; 2007 Apr; 25(8):2413-24. PubMed ID: 17445238
    [Abstract] [Full Text] [Related]

  • 2. The role of Clock in the plasticity of circadian entrainment.
    Udo R, Hamada T, Horikawa K, Iwahana E, Miyakawa K, Otsuka K, Shibata S.
    Biochem Biophys Res Commun; 2004 Jun 11; 318(4):893-8. PubMed ID: 15147955
    [Abstract] [Full Text] [Related]

  • 3. PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders.
    Shirai H, Oishi K, Kudo T, Shibata S, Ishida N.
    Biochem Biophys Res Commun; 2007 Jun 08; 357(3):679-82. PubMed ID: 17449013
    [Abstract] [Full Text] [Related]

  • 4. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S.
    Neuroscience; 2005 Jun 08; 134(1):335-43. PubMed ID: 15961241
    [Abstract] [Full Text] [Related]

  • 5. Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.
    Rahman SA, Kayumov L, Tchmoutina EA, Shapiro CM.
    Sleep Med; 2009 May 08; 10(5):549-55. PubMed ID: 18725185
    [Abstract] [Full Text] [Related]

  • 6. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME, Gobes SM, Pavlovska I, Su C, Mistlberger RE, Glass JD.
    Eur J Neurosci; 2004 May 08; 19(10):2779-90. PubMed ID: 15147311
    [Abstract] [Full Text] [Related]

  • 7. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J, Pévet P, Challet E.
    J Neurosci Res; 2009 Feb 15; 87(3):758-65. PubMed ID: 18831006
    [Abstract] [Full Text] [Related]

  • 8. Effects of ramelteon and triazolam in a mouse genetic model of early morning awakenings.
    Wisor JP, Jiang P, Striz M, O'Hara BF.
    Brain Res; 2009 Nov 03; 1296():46-55. PubMed ID: 19664610
    [Abstract] [Full Text] [Related]

  • 9. Modeling the circadian clock: from molecular mechanism to physiological disorders.
    Leloup JC, Goldbeter A.
    Bioessays; 2008 Jun 03; 30(6):590-600. PubMed ID: 18478538
    [Abstract] [Full Text] [Related]

  • 10. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M, El M'rabet A, Ouarour A, Pévet P, Challet E, Vuillez P.
    Chronobiol Int; 2008 Nov 03; 25(6):882-904. PubMed ID: 19005894
    [Abstract] [Full Text] [Related]

  • 11. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M, Rauch A, Korf HW, von Gall C.
    Chronobiol Int; 2012 May 03; 29(4):415-29. PubMed ID: 22489607
    [Abstract] [Full Text] [Related]

  • 12. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J, Revel FG, Pévet P, Challet E.
    Eur J Neurosci; 2007 May 03; 25(10):3080-90. PubMed ID: 17561821
    [Abstract] [Full Text] [Related]

  • 13. The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis.
    Hart L, Bennett NC, Malpaux B, Chimimba CT, Oosthuizen MK.
    Physiol Behav; 2004 Sep 15; 82(2-3):563-9. PubMed ID: 15276823
    [Abstract] [Full Text] [Related]

  • 14. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice.
    Mendoza J, Pévet P, Challet E.
    Eur J Neurosci; 2007 Jun 15; 25(12):3691-701. PubMed ID: 17610588
    [Abstract] [Full Text] [Related]

  • 15. Circadian intraocular pressure rhythm is generated by clock genes.
    Maeda A, Tsujiya S, Higashide T, Toida K, Todo T, Ueyama T, Okamura H, Sugiyama K.
    Invest Ophthalmol Vis Sci; 2006 Sep 15; 47(9):4050-2. PubMed ID: 16936122
    [Abstract] [Full Text] [Related]

  • 16. Clock controls circadian period in isolated suprachiasmatic nucleus neurons.
    Herzog ED, Takahashi JS, Block GD.
    Nat Neurosci; 1998 Dec 15; 1(8):708-13. PubMed ID: 10196587
    [Abstract] [Full Text] [Related]

  • 17. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes.
    Mendoza J, Albrecht U, Challet E.
    Genes Brain Behav; 2010 Jul 15; 9(5):467-77. PubMed ID: 20180860
    [Abstract] [Full Text] [Related]

  • 18. Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles.
    James FO, Boivin DB, Charbonneau S, Bélanger V, Cermakian N.
    Chronobiol Int; 2007 Jul 15; 24(6):1009-34. PubMed ID: 18075796
    [Abstract] [Full Text] [Related]

  • 19. The phasing of circadian rhythms in mice kept under normal or short photoperiods.
    Weinert D, Freyberg S, Touitou Y, Djeridane Y, Waterhouse JM.
    Physiol Behav; 2005 Apr 13; 84(5):791-8. PubMed ID: 15885257
    [Abstract] [Full Text] [Related]

  • 20. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y, Honma S, Honma K.
    Genes Cells; 2008 May 13; 13(5):497-507. PubMed ID: 18429821
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.