These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
96 related items for PubMed ID: 17446216
1. Muscle cell volume and pH changes due to glycolytic ATP synthesis. Kemp G. J Physiol; 2007 Jul 01; 582(Pt 1):461-5; author reply 467-70. PubMed ID: 17446216 [No Abstract] [Full Text] [Related]
2. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B, Liguzinski P. Biophys Chem; 2004 Jul 01; 110(1-2):147-69. PubMed ID: 15223151 [Abstract] [Full Text] [Related]
3. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles. Korzeniewski B, Zoladz JA. Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260 [Abstract] [Full Text] [Related]
4. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ, Sanderson AL, Thompson CH, Radda GK. NMR Biomed; 1996 Sep 01; 9(6):261-70. PubMed ID: 9073304 [Abstract] [Full Text] [Related]
5. High energy phosphate depletion in a model of defective muscle glycolysis. Brumback RA, Gerst JW, Knull HR. Muscle Nerve; 1983 Jan 01; 6(1):52-5. PubMed ID: 6843586 [No Abstract] [Full Text] [Related]
6. Muscle fatigue and lactic acid accumulation. Sahlin K. Acta Physiol Scand Suppl; 1986 Jan 01; 556():83-91. PubMed ID: 3471061 [Abstract] [Full Text] [Related]
7. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Schmitz JP, Groenendaal W, Wessels B, Wiseman RW, Hilbers PA, Nicolay K, Prompers JJ, Jeneson JA, van Riel NA. Am J Physiol Cell Physiol; 2013 Jan 15; 304(2):C180-93. PubMed ID: 23114964 [Abstract] [Full Text] [Related]
8. Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling. Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, Conley KE. Proc Natl Acad Sci U S A; 2001 Jan 16; 98(2):723-8. PubMed ID: 11120879 [Abstract] [Full Text] [Related]
9. Temperature and pH dependence of energy balance by (31)P- and (1)H-MRS in anaerobic frog muscle. Vezzoli A, Gussoni M, Greco F, Zetta L, Cerretelli P. Biochim Biophys Acta; 2004 Feb 15; 1608(2-3):163-70. PubMed ID: 14871494 [Abstract] [Full Text] [Related]
10. Interpreting the phosphocreatine time constant in aerobically exercising skeletal muscle. Kemp G. J Appl Physiol (1985); 2009 Jan 15; 106(1):350; author reply 351. PubMed ID: 19131491 [No Abstract] [Full Text] [Related]
11. Biochemical adaptations to exercise: anaerobic metabolism. Gollnick PD, Hermansen L. Exerc Sport Sci Rev; 1973 Jan 15; 1():1-43. PubMed ID: 4806373 [No Abstract] [Full Text] [Related]
17. Energy metabolism of rat skeletal muscle modulated by the rate of perfusion flow. Stefl B, Mejsnar JA, Janovská A. Exp Physiol; 1999 Jul 15; 84(4):651-63. PubMed ID: 10481223 [Abstract] [Full Text] [Related]
18. Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the "lactate paradox". Cerretelli P, Samaja M. Eur J Appl Physiol; 2003 Nov 15; 90(5-6):431-48. PubMed ID: 14504942 [Abstract] [Full Text] [Related]