These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 17446216

  • 21. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE.
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [Abstract] [Full Text] [Related]

  • 22. Effect of acidosis on skeletal muscle performance during maximal exercise in man.
    Hermansen L.
    Bull Eur Physiopathol Respir; 1979 Aug; 15(2):229-41. PubMed ID: 39653
    [No Abstract] [Full Text] [Related]

  • 23. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2002 Jul 01; 365(Pt 1):249-58. PubMed ID: 12132435
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E, Sjöholm H, Sahlin K, Edström L.
    Ciba Found Symp; 1981 Jul 01; 82():19-40. PubMed ID: 6271506
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Mitochondria influence postmortem metabolism and pH in an in vitro model.
    Scheffler TL, Matarneh SK, England EM, Gerrard DE.
    Meat Sci; 2015 Dec 01; 110():118-25. PubMed ID: 26209819
    [Abstract] [Full Text] [Related]

  • 28. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B.
    Biochem J; 2003 Nov 01; 375(Pt 3):799-804. PubMed ID: 12901719
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle.
    Kemp GJ.
    J Theor Biol; 1994 Oct 07; 170(3):239-46. PubMed ID: 7996853
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Mechanical efficiency of phosphagen (ATP+CP) splitting and its speed of resynthesis.
    Di Prampero PE, Margaria R.
    Pflugers Arch; 1969 Oct 07; 308(3):197-202. PubMed ID: 5813950
    [No Abstract] [Full Text] [Related]

  • 35. Combined glycolytic production of lactate(-) and ATP(4-) derived protons (= dissociated lactic acid) is the only cause of metabolic acidosis of exercise--a note on the OH(-) absorbing function of lactate (1-) production.
    Moll W, Gros G.
    J Appl Physiol (1985); 2008 Jul 07; 105(1):365. PubMed ID: 18680794
    [No Abstract] [Full Text] [Related]

  • 36. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. strong ion difference.
    Kemp G, Böning D, Beneke R, Maassen N.
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul 07; 291(1):R235-7; author reply R238-9. PubMed ID: 16760335
    [No Abstract] [Full Text] [Related]

  • 37. Last word on point:counterpoint: lactic acid is/is not the only physicochemical contributor to the acidosis of exercise.
    Böning D, Maassen N.
    J Appl Physiol (1985); 2008 Jul 07; 105(1):368. PubMed ID: 18641216
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Counterpoint: lactic acid accumulation is a disadvantage during muscle activity.
    Bangsbo J, Juel C.
    J Appl Physiol (1985); 2006 Apr 07; 100(4):1412-3; discussion 1413-4. PubMed ID: 16646130
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.