These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 1745232
1. TFS1: a suppressor of cdc25 mutations in Saccharomyces cerevisiae. Robinson LC, Tatchell K. Mol Gen Genet; 1991 Nov; 230(1-2):241-50. PubMed ID: 1745232 [Abstract] [Full Text] [Related]
2. SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae. Damak F, Boy-Marcotte E, Le-Roscouet D, Guilbaud R, Jacquet M. Mol Cell Biol; 1991 Jan; 11(1):202-12. PubMed ID: 1986220 [Abstract] [Full Text] [Related]
3. Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Petitjean A, Hilger F, Tatchell K. Genetics; 1990 Apr; 124(4):797-806. PubMed ID: 2157625 [Abstract] [Full Text] [Related]
4. The C-terminal part of a gene partially homologous to CDC 25 gene suppresses the cdc25-5 mutation in Saccharomyces cerevisiae. Boy-Marcotte E, Damak F, Camonis J, Garreau H, Jacquet M. Gene; 1989 Apr 15; 77(1):21-30. PubMed ID: 2545538 [Abstract] [Full Text] [Related]
5. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. Martegani E, Vanoni M, Zippel R, Coccetti P, Brambilla R, Ferrari C, Sturani E, Alberghina L. EMBO J; 1992 Jun 15; 11(6):2151-7. PubMed ID: 1376246 [Abstract] [Full Text] [Related]
6. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Wei W, Mosteller RD, Sanyal P, Gonzales E, McKinney D, Dasgupta C, Li P, Liu BX, Broek D. Proc Natl Acad Sci U S A; 1992 Aug 01; 89(15):7100-4. PubMed ID: 1379731 [Abstract] [Full Text] [Related]
7. Overexpression of the CDC25 gene, an upstream element of the RAS/adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product. Vanoni M, Vavassori M, Frascotti G, Martegani E, Alberghina L. Biochem Biophys Res Commun; 1990 Oct 15; 172(1):61-9. PubMed ID: 2121145 [Abstract] [Full Text] [Related]
8. Mutagenic alteration of the distal switch II region of RAS blocks CDC25-dependent signaling functions. Mirisola MG, Seidita G, Verrotti AC, Di Blasi F, Fasano O. J Biol Chem; 1994 Jun 03; 269(22):15740-8. PubMed ID: 8195227 [Abstract] [Full Text] [Related]
9. Identification and analysis of a DNA fragment from Saccharomyces kluyveri that can complement the loss of CDC25 function in Saccharomyces cerevisiae. Prigozy T, Gonzales E, Broek D. Gene; 1992 Aug 01; 117(1):67-72. PubMed ID: 1644315 [Abstract] [Full Text] [Related]
10. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M. Cell; 1987 Mar 13; 48(5):789-99. PubMed ID: 3545497 [Abstract] [Full Text] [Related]
11. Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras. Segal M, Marbach I, Engelberg D, Simchen G, Levitzki A. J Biol Chem; 1992 Nov 15; 267(32):22747-51. PubMed ID: 1429624 [Abstract] [Full Text] [Related]
12. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants. Perlman R, Yablonski D, Simchen G, Levitzki A. Proc Natl Acad Sci U S A; 1993 Jun 15; 90(12):5474-8. PubMed ID: 8516289 [Abstract] [Full Text] [Related]
13. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo. Munder T, Fürst P. Mol Cell Biol; 1992 May 15; 12(5):2091-9. PubMed ID: 1569942 [Abstract] [Full Text] [Related]
14. In vitro reconstitution of cdc25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. Engelberg D, Simchen G, Levitzki A. EMBO J; 1990 Mar 15; 9(3):641-51. PubMed ID: 2155776 [Abstract] [Full Text] [Related]
15. Residues crucial for Ras interaction with GDP-GTP exchangers. Segal M, Willumsen BM, Levitzki A. Proc Natl Acad Sci U S A; 1993 Jun 15; 90(12):5564-8. PubMed ID: 8516302 [Abstract] [Full Text] [Related]
16. Analysis of the MSS51 region on chromosome XII of Saccharomyces cerevisiae. Simon M, Della Seta F, Sor F, Faye G. Yeast; 1992 Jul 15; 8(7):559-67. PubMed ID: 1523888 [Abstract] [Full Text] [Related]
17. In vitro interaction between Saccharomyces cerevisiae CDC25 and RAS2 proteins. Baroni MD, Marconi G, Parrini MC, Monti P, Alberghina L. Biochem Biophys Res Commun; 1992 Jul 15; 186(1):467-74. PubMed ID: 1632785 [Abstract] [Full Text] [Related]
18. The overexpression of the 3' terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools. Frascotti G, Coccetti P, Vanoni MA, Alberghina L, Martegani E. Biochim Biophys Acta; 1991 Jun 13; 1089(2):206-12. PubMed ID: 1647210 [Abstract] [Full Text] [Related]
19. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Powers S, O'Neill K, Wigler M. Mol Cell Biol; 1989 Feb 13; 9(2):390-5. PubMed ID: 2651897 [Abstract] [Full Text] [Related]
20. Cloning and characterization of NSP1, a locus encoding a component of a CDC25-dependent, nutrient-responsive pathway in Saccharomyces cerevisiae. Tripp ML, Bouchard RA, Piñón R. Mol Microbiol; 1989 Oct 13; 3(10):1319-27. PubMed ID: 2693892 [Abstract] [Full Text] [Related] Page: [Next] [New Search]