These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 17457811
1. Time-courses of perfusion and phosphocreatine in rat leg during low-level exercise and recovery. Marro KI, Olive JL, Hyyti OM, Kushmerick MJ. J Magn Reson Imaging; 2007 May; 25(5):1021-7. PubMed ID: 17457811 [Abstract] [Full Text] [Related]
2. FAWSETS perfusion measurements in exercising skeletal muscle. Marro KI, Hyyti OM, Kushmerick MJ. NMR Biomed; 2005 Aug; 18(5):322-30. PubMed ID: 15884098 [Abstract] [Full Text] [Related]
3. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multiparametric functional-NMR approach. Baligand C, Wary C, Ménard JC, Giacomini E, Hogrel JY, Carlier PG. NMR Biomed; 2011 Apr; 24(3):281-90. PubMed ID: 20862659 [Abstract] [Full Text] [Related]
4. Local relation between oxidative metabolism and perfusion in leg muscles of patients with heart failure studied by magnetic resonance imaging and spectroscopy. Toussaint JF, Koelling TM, Schmidt CJ, Kwong KK, LaRaia PJ, Kantor HL. J Heart Lung Transplant; 1998 Sep; 17(9):892-900. PubMed ID: 9773862 [Abstract] [Full Text] [Related]
5. Quantitative, dynamic and noninvasive determination of skeletal muscle perfusion in mouse leg by NMR arterial spin-labeled imaging. Bertoldi D, Loureiro de Sousa P, Fromes Y, Wary C, Carlier PG. Magn Reson Imaging; 2008 Nov; 26(9):1259-65. PubMed ID: 18499385 [Abstract] [Full Text] [Related]
6. Functional assessment of skeletal muscle in intact mice lacking myostatin by concurrent NMR imaging and spectroscopy. Baligand C, Gilson H, Ménard JC, Schakman O, Wary C, Thissen JP, Carlier PG. Gene Ther; 2010 Mar; 17(3):328-37. PubMed ID: 20010628 [Abstract] [Full Text] [Related]
7. Phosphocreatine kinetics in humans during exercise and recovery. McCann DJ, Molé PA, Caton JR. Med Sci Sports Exerc; 1995 Mar; 27(3):378-89. PubMed ID: 7752865 [Abstract] [Full Text] [Related]
8. Abnormal ATP turnover in rat leg muscle during exercise and recovery following myocardial infarction. Thompson CH, Kemp GJ, Rajagopalan B, Radda GK. Cardiovasc Res; 1995 Mar; 29(3):344-9. PubMed ID: 7781009 [Abstract] [Full Text] [Related]
9. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS). Schocke MF, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A. Magn Reson Imaging; 2004 Jan; 22(1):109-15. PubMed ID: 14972400 [Abstract] [Full Text] [Related]
10. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P, Varshney A, Devi MM, Kumar P, Khushu S. Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477 [Abstract] [Full Text] [Related]
12. Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y. NMR Biomed; 2006 Nov; 19(7):954-67. PubMed ID: 17075963 [Abstract] [Full Text] [Related]
13. Validation and advantages of FAWSETS perfusion measurements in skeletal muscle. Marro KI, Hyyti OM, Vincent MA, Kushmerick MJ. NMR Biomed; 2005 Jun; 18(4):226-34. PubMed ID: 15674816 [Abstract] [Full Text] [Related]
14. Fast perfusion measurements in rat skeletal muscle at rest and during exercise with single-voxel FAIR (flow-sensitive alternating inversion recovery). Pohmann R, Künnecke B, Fingerle J, von Kienlin M. Magn Reson Med; 2006 Jan; 55(1):108-15. PubMed ID: 16315203 [Abstract] [Full Text] [Related]
15. Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA. Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R161-70. PubMed ID: 18945946 [Abstract] [Full Text] [Related]
16. Metabolic disturbances during short exercises in dermatomyositis revealed by real-time functional 31P magnetic resonance spectroscopy. Pfleiderer B, Lange J, Loske KD, Sunderkötter C. Rheumatology (Oxford); 2004 Jun; 43(6):696-703. PubMed ID: 15054156 [Abstract] [Full Text] [Related]
17. Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Coffey VG, Reeder DW, Lancaster GI, Yeo WK, Febbraio MA, Yaspelkis BB, Hawley JA. Med Sci Sports Exerc; 2007 Dec; 39(12):2135-44. PubMed ID: 18046184 [Abstract] [Full Text] [Related]
18. Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Korzeniewski B. Biochem J; 2003 Nov 01; 375(Pt 3):799-804. PubMed ID: 12901719 [Abstract] [Full Text] [Related]
19. Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle. Kreis R, Jung B, Slotboom J, Felblinger J, Boesch C. J Magn Reson; 1999 Apr 01; 137(2):350-7. PubMed ID: 10089169 [Abstract] [Full Text] [Related]
20. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. Kan HE, Renema WK, Isbrandt D, Heerschap A. J Physiol; 2004 Oct 01; 560(Pt 1):219-29. PubMed ID: 15284341 [Abstract] [Full Text] [Related] Page: [Next] [New Search]