These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


599 related items for PubMed ID: 17461659

  • 1. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C, de Miguel E.
    J Chem Phys; 2007 Apr 21; 126(15):154707. PubMed ID: 17461659
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Capillary waves at the liquid-vapor interface and the surface tension of water.
    Ismail AE, Grest GS, Stevens MJ.
    J Chem Phys; 2006 Jul 07; 125(1):014702. PubMed ID: 16863319
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water.
    Mountain RD.
    J Phys Chem B; 2009 Jan 15; 113(2):482-6. PubMed ID: 19086867
    [Abstract] [Full Text] [Related]

  • 6. The melting temperature of the most common models of water.
    Vega C, Sanz E, Abascal JL.
    J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229
    [Abstract] [Full Text] [Related]

  • 7. The importance of polarizability in the modeling of solubility: quantifying the effect of solute polarizability on the solubility of small nonpolar solutes in popular models of water.
    Dyer PJ, Docherty H, Cummings PT.
    J Chem Phys; 2008 Jul 14; 129(2):024508. PubMed ID: 18624539
    [Abstract] [Full Text] [Related]

  • 8. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials.
    Gloor GJ, Jackson G, Blas FJ, de Miguel E.
    J Chem Phys; 2005 Oct 01; 123(13):134703. PubMed ID: 16223322
    [Abstract] [Full Text] [Related]

  • 9. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R, Sum AK, Narumi T, Yasuoka K.
    J Chem Phys; 2011 Mar 28; 134(12):124708. PubMed ID: 21456696
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW, Swope WC, Pitera JW.
    J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097
    [Abstract] [Full Text] [Related]

  • 11. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Calculation of surface tension via area sampling.
    Errington JR, Kofke DA.
    J Chem Phys; 2007 Nov 07; 127(17):174709. PubMed ID: 17994844
    [Abstract] [Full Text] [Related]

  • 14. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D.
    J Chem Phys; 2004 Apr 08; 120(14):6674-90. PubMed ID: 15267560
    [Abstract] [Full Text] [Related]

  • 15. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ, Jackson G, Blas FJ, Del Río EM, de Miguel E.
    J Chem Phys; 2004 Dec 22; 121(24):12740-59. PubMed ID: 15606300
    [Abstract] [Full Text] [Related]

  • 16. Surface tension of water and acid gases from Monte Carlo simulations.
    Ghoufi A, Goujon F, Lachet V, Malfreyt P.
    J Chem Phys; 2008 Apr 21; 128(15):154716. PubMed ID: 18433267
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J, Yoo S, Bai J, Morris JR, Zeng XC.
    J Chem Phys; 2005 Jul 15; 123(3):36101. PubMed ID: 16080767
    [Abstract] [Full Text] [Related]

  • 19. Computer simulation of two new solid phases of water: Ice XIII and ice XIV.
    Martin-Conde M, MacDowell LG, Vega C.
    J Chem Phys; 2006 Sep 21; 125(11):116101. PubMed ID: 16999507
    [Abstract] [Full Text] [Related]

  • 20. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J, Vehkamaki H, Zapadinsky E.
    J Chem Phys; 2004 Jul 08; 121(2):914-24. PubMed ID: 15260623
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.