These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 17464523

  • 1. Differential changes in long-interval intracortical inhibition and silent period duration during fatiguing hand exercise.
    Benwell NM, Mastaglia FL, Thickbroom GW.
    Exp Brain Res; 2007 May; 179(2):255-62. PubMed ID: 17464523
    [Abstract] [Full Text] [Related]

  • 2. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW.
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [Abstract] [Full Text] [Related]

  • 3. Paired-pulse rTMS at trans-synaptic intervals increases corticomotor excitability and reduces the rate of force loss during a fatiguing exercise of the hand.
    Benwell NM, Mastaglia FL, Thickbroom GW.
    Exp Brain Res; 2006 Nov; 175(4):626-32. PubMed ID: 16783555
    [Abstract] [Full Text] [Related]

  • 4. Single joint fatiguing exercise decreases long but not short-interval intracortical inhibition in older adults.
    Otieno LA, Semmler JG, Sidhu SK.
    Exp Brain Res; 2021 Jan; 239(1):47-58. PubMed ID: 33098654
    [Abstract] [Full Text] [Related]

  • 5. Modulation of short- and long-interval intracortical inhibition with increasing motor evoked potential amplitude in a human hand muscle.
    Opie GM, Semmler JG.
    Clin Neurophysiol; 2014 Jul; 125(7):1440-50. PubMed ID: 24345316
    [Abstract] [Full Text] [Related]

  • 6. Post-exercise depression in corticomotor excitability after dynamic movement: a general property of fatiguing and non-fatiguing exercise.
    Teo WP, Rodrigues JP, Mastaglia FL, Thickbroom GW.
    Exp Brain Res; 2012 Jan; 216(1):41-9. PubMed ID: 22038716
    [Abstract] [Full Text] [Related]

  • 7. Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle.
    Opie GM, Semmler JG.
    Brain Stimul; 2014 Jan; 7(5):665-72. PubMed ID: 25088463
    [Abstract] [Full Text] [Related]

  • 8. Modulation of long-interval intracortical inhibition and the silent period by voluntary contraction.
    Hammond G, Vallence AM.
    Brain Res; 2007 Jul 16; 1158():63-70. PubMed ID: 17559815
    [Abstract] [Full Text] [Related]

  • 9. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb.
    Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC.
    Brain Stimul; 2011 Apr 16; 4(2):90-6. PubMed ID: 21511209
    [Abstract] [Full Text] [Related]

  • 10. High-intensity exhaustive exercise reduces long-interval intracortical inhibition.
    O'Leary TJ, Collett J, Morris MG.
    Exp Brain Res; 2018 Dec 16; 236(12):3149-3158. PubMed ID: 30159591
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles.
    Latella C, van der Groen O, Ruas CV, Taylor JL.
    J Appl Physiol (1985); 2020 Jan 01; 128(1):149-158. PubMed ID: 31725359
    [Abstract] [Full Text] [Related]

  • 13. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.
    Uehara K, Morishita T, Kubota S, Funase K.
    Behav Brain Res; 2013 Mar 01; 240():33-45. PubMed ID: 23174210
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A, Matsunaga K, Tanaka N, Rothwell JC.
    Clin Neurophysiol; 2006 Apr 01; 117(4):864-70. PubMed ID: 16495147
    [Abstract] [Full Text] [Related]

  • 18. Acute aerobic exercise modulates primary motor cortex inhibition.
    Mooney RA, Coxon JP, Cirillo J, Glenny H, Gant N, Byblow WD.
    Exp Brain Res; 2016 Dec 01; 234(12):3669-3676. PubMed ID: 27590480
    [Abstract] [Full Text] [Related]

  • 19. Intermittent single-joint fatiguing exercise reduces TMS-EEG measures of cortical inhibition.
    Otieno LA, Opie GM, Semmler JG, Ridding MC, Sidhu SK.
    J Neurophysiol; 2019 Feb 01; 121(2):471-479. PubMed ID: 30565971
    [Abstract] [Full Text] [Related]

  • 20. Differential effect of muscle vibration on intracortical inhibitory circuits in humans.
    Rosenkranz K, Rothwell JC.
    J Physiol; 2003 Sep 01; 551(Pt 2):649-60. PubMed ID: 12821723
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.