These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 17467004
1. Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp. Raymond B, Davis D, Bonsall MB. J Invertebr Pathol; 2007 Oct; 96(2):151-5. PubMed ID: 17467004 [Abstract] [Full Text] [Related]
2. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B, Lijek RS, Griffiths RI, Bonsall MB. J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [Abstract] [Full Text] [Related]
3. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Raymond B, Elliot SL, Ellis RJ. J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832 [Abstract] [Full Text] [Related]
4. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B, Johnston PR, Wright DJ, Ellis RJ, Crickmore N, Bonsall MB. Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [Abstract] [Full Text] [Related]
5. Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima diakonoff (Lepidoptera: tortricidae). Takatsuka J, Kunimi Y. J Invertebr Pathol; 2000 Oct; 76(3):222-6. PubMed ID: 11023751 [Abstract] [Full Text] [Related]
6. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. Kati H, Sezen K, Nalcacioglu R, Demirbag Z. J Microbiol; 2007 Dec; 45(6):553-7. PubMed ID: 18176540 [Abstract] [Full Text] [Related]
7. Larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), to Bacillus thuringiensis H serovars isolated in Japan. Higuchi K, Saitoh H, Mizuki E, Ichimatsu T, Ohba M. Microbiol Res; 2000 Apr; 155(1):23-9. PubMed ID: 10830896 [Abstract] [Full Text] [Related]
8. Antagonistic competition moderates virulence in Bacillus thuringiensis. Garbutt J, Bonsall MB, Wright DJ, Raymond B. Ecol Lett; 2011 Aug; 14(8):765-72. PubMed ID: 21635671 [Abstract] [Full Text] [Related]
9. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Mohan M, Sushil SN, Selvakumar G, Bhatt JC, Gujar GT, Gupta HS. Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222 [Abstract] [Full Text] [Related]
10. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. El-Aziz NM, Awad HH. Micron; 2010 Apr; 41(3):203-9. PubMed ID: 20056427 [Abstract] [Full Text] [Related]
12. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. Mahbubur Rahman M, Roberts HL, Schmidt O. J Invertebr Pathol; 2007 Oct; 96(2):125-32. PubMed ID: 17499761 [Abstract] [Full Text] [Related]
13. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. van Frankenhuyzen K, Liu Y, Tonon A. J Invertebr Pathol; 2010 Feb; 103(2):124-31. PubMed ID: 20035766 [Abstract] [Full Text] [Related]
14. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Yuan YM, Hu XM, Liu HZ, Hansen BM, Yan JP, Yuan ZM. Arch Microbiol; 2007 Jun; 187(6):425-31. PubMed ID: 17216168 [Abstract] [Full Text] [Related]
15. Activity of spores and extracellular proteins from six Cry+ strains and a Cry- strain of Bacillus thuringiensis subsp. kurstaki against the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). Kalmykova G, Burtseva L, Milne R, van Frankenhuyzen K. Can J Microbiol; 2009 May; 55(5):536-43. PubMed ID: 19483782 [Abstract] [Full Text] [Related]
16. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L. Konecka E, Kaznowski A, Ziemnicka J, Ziemnicki K. J Invertebr Pathol; 2007 Jan; 94(1):56-63. PubMed ID: 17027023 [Abstract] [Full Text] [Related]
17. Effects of an ascovirus (HvAV-3e) on diamondback moth, Plutella xylostella, and evidence for virus transmission by a larval parasitoid. Furlong MJ, Asgari S. J Invertebr Pathol; 2010 Feb; 103(2):89-95. PubMed ID: 19931539 [Abstract] [Full Text] [Related]
19. [Interrelationship between the intestinal microflora of lackey moth, brown-tail moth and the entomopathogenic bacterium Bacillus thuringiensis]. Rizvanov K. Mikrobiologiia; 1975 Feb; 44(6):1074-80. PubMed ID: 2842 [Abstract] [Full Text] [Related]
20. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae. Prabhakar A, Bishop AH. J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351 [Abstract] [Full Text] [Related] Page: [Next] [New Search]