These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 17467173

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62. Buspirone induced acute and chronic changes of neural activation in the periaqueductal gray of rats.
    Lim LW, Temel Y, Sesia T, Vlamings R, Visser-Vandewalle V, Steinbusch HW, Blokland A.
    Neuroscience; 2008 Jul 31; 155(1):164-73. PubMed ID: 18588948
    [Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64. Convergence of midbrain, visceral and somatic inputs onto neurons in the nucleus paragigantocellularis lateralis in rats.
    Peng YJ, Gong QL, Li P.
    Sheng Li Xue Bao; 1998 Oct 31; 50(5):575-80. PubMed ID: 11367756
    [Abstract] [Full Text] [Related]

  • 65. Patterns of FOS expression in the spinal cord and periaqueductal grey matter of 6OHDA-lesioned rats.
    Reyes S, Mitrofanis J.
    Int J Neurosci; 2008 Aug 31; 118(8):1053-79. PubMed ID: 18576208
    [Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70. Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus.
    Klop EM, Mouton LJ, Kuipers R, Holstege G.
    Eur J Neurosci; 2005 Apr 31; 21(8):2159-66. PubMed ID: 15869512
    [Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73. Distinct central representations of inescapable and escapable pain: observations and speculation.
    Keay KA, Bandler R.
    Exp Physiol; 2002 Mar 31; 87(2):275-9. PubMed ID: 11856974
    [Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 77. Coeruleospinal inhibition of visceral nociceptive processing in the rat spinal cord.
    Liu L, Tsuruoka M, Maeda M, Hayashi B, Inoue T.
    Neurosci Lett; 2007 Oct 22; 426(3):139-44. PubMed ID: 17913360
    [Abstract] [Full Text] [Related]

  • 78. Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis.
    Lyubashina OA, Sivachenko IB, Mikhalkin AA.
    Brain Res Bull; 2022 May 22; 182():12-25. PubMed ID: 35131337
    [Abstract] [Full Text] [Related]

  • 79.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 80. Participation of mu-opioid, GABA(B), and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission.
    Pinto M, Sousa M, Lima D, Tavares I.
    J Comp Neurol; 2008 Sep 10; 510(2):175-87. PubMed ID: 18615498
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.