These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 17472376
21. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Rozwarski DA, Grant GA, Barton DH, Jacobs WR, Sacchettini JC. Science; 1998 Jan 02; 279(5347):98-102. PubMed ID: 9417034 [Abstract] [Full Text] [Related]
22. Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA. Pennati A, Razeto A, de Rosa M, Pandini V, Vanoni MA, Mattevi A, Coda A, Aliverti A, Zanetti G. Biochemistry; 2006 Jul 25; 45(29):8712-20. PubMed ID: 16846214 [Abstract] [Full Text] [Related]
23. Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD+ nicotinamide but does not experience A-specific hydride transfer. Eyschen J, Vitoux B, Marraud M, Cung MT, Branlant G. Arch Biochem Biophys; 1999 Apr 15; 364(2):219-27. PubMed ID: 10190977 [Abstract] [Full Text] [Related]
25. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site. Doll C, Bell AF, Power N, Tonge PJ, Tipton PA. Biochemistry; 2005 Aug 30; 44(34):11440-6. PubMed ID: 16114880 [Abstract] [Full Text] [Related]
26. Docking studies on novel alkaloid tryptanthrin and its analogues against enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis. Tripathi A, Wadia N, Bindal D, Jana T. Indian J Biochem Biophys; 2012 Dec 30; 49(6):435-41. PubMed ID: 23350278 [Abstract] [Full Text] [Related]
27. Structures of NADH and CH3-H4folate complexes of Escherichia coli methylenetetrahydrofolate reductase reveal a spartan strategy for a ping-pong reaction. Pejchal R, Sargeant R, Ludwig ML. Biochemistry; 2005 Aug 30; 44(34):11447-57. PubMed ID: 16114881 [Abstract] [Full Text] [Related]
28. Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. Delaine T, Bernardes-Génisson V, Quémard A, Constant P, Meunier B, Bernadou J. Eur J Med Chem; 2010 Oct 30; 45(10):4554-61. PubMed ID: 20696503 [Abstract] [Full Text] [Related]
29. A single mutation at Tyr143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide-adenine dinucleotide. Beluzić R, Cuk M, Pavkov T, Fumić K, Barić I, Mudd SH, Jurak I, Vugrek O. Biochem J; 2006 Dec 01; 400(2):245-53. PubMed ID: 16872278 [Abstract] [Full Text] [Related]
30. 1H and 13C NMR characterization of pyridinium-type isoniazid-NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Broussy S, Bernardes-Génisson V, Coppel Y, Quémard A, Bernadou J, Meunier B. Org Biomol Chem; 2005 Feb 21; 3(4):670-3. PubMed ID: 15703806 [Abstract] [Full Text] [Related]
32. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Perez-Miller SJ, Hurley TD. Biochemistry; 2003 Jun 17; 42(23):7100-9. PubMed ID: 12795606 [Abstract] [Full Text] [Related]
33. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Subba Rao G, Vijayakrishnan R, Kumar M. Chem Biol Drug Des; 2008 Nov 17; 72(5):444-9. PubMed ID: 19012578 [Abstract] [Full Text] [Related]
34. Structure and quantum chemical analysis of NAD+-dependent isocitrate dehydrogenase: hydride transfer and co-factor specificity. Imada K, Tamura T, Takenaka R, Kobayashi I, Namba K, Inagaki K. Proteins; 2008 Jan 01; 70(1):63-71. PubMed ID: 17634983 [Abstract] [Full Text] [Related]
35. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH. Inorg Chem; 2001 Dec 17; 40(26):6705-16. PubMed ID: 11735482 [Abstract] [Full Text] [Related]
36. Three-dimensional structures of apo- and holo-L-alanine dehydrogenase from Mycobacterium tuberculosis reveal conformational changes upon coenzyme binding. Agren D, Stehr M, Berthold CL, Kapoor S, Oehlmann W, Singh M, Schneider G. J Mol Biol; 2008 Apr 04; 377(4):1161-73. PubMed ID: 18304579 [Abstract] [Full Text] [Related]
37. Discovery of potential new InhA direct inhibitors based on pharmacophore and 3D-QSAR analysis followed by in silico screening. Lu XY, Chen YD, Jiang YJ, You QD. Eur J Med Chem; 2009 Sep 04; 44(9):3718-30. PubMed ID: 19428156 [Abstract] [Full Text] [Related]
38. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR, Blanchard JS. Biochemistry; 1995 Jul 04; 34(26):8235-41. PubMed ID: 7599116 [Abstract] [Full Text] [Related]
39. Inhibition of Mycobacterium tuberculosis InhA by 3-nitropropanoic acid. Songsiriritthigul C, Hanwarinroj C, Pakamwong B, Srimanote P, Suttipanta N, Sureram S, Suttisintong K, Kamsri P, Punkvang A, Spencer J, Kittakoop P, Pungpo P. Proteins; 2022 Mar 04; 90(3):898-904. PubMed ID: 34677871 [Abstract] [Full Text] [Related]
40. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Bhushan B, Halasz A, Hawari J. Biochem Biophys Res Commun; 2005 Dec 02; 337(4):1080-3. PubMed ID: 16225844 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]