These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


883 related items for PubMed ID: 17474760

  • 1. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K, Imai H, Shichida Y.
    Biochemistry; 2007 May 29; 46(21):6437-45. PubMed ID: 17474760
    [Abstract] [Full Text] [Related]

  • 2. E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment.
    Tsutsui K, Imai H, Shichida Y.
    Biochemistry; 2008 Oct 14; 47(41):10829-33. PubMed ID: 18803408
    [Abstract] [Full Text] [Related]

  • 3. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227.
    Imasheva ES, Shimono K, Balashov SP, Wang JM, Zadok U, Sheves M, Kamo N, Lanyi JK.
    Biochemistry; 2005 Aug 16; 44(32):10828-38. PubMed ID: 16086585
    [Abstract] [Full Text] [Related]

  • 4. Photosensitivities of rhodopsin mutants with a displaced counterion.
    Tsutsui K, Shichida Y.
    Biochemistry; 2010 Nov 30; 49(47):10089-97. PubMed ID: 21038858
    [Abstract] [Full Text] [Related]

  • 5. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K, Sakmar TP.
    Biochemistry; 1993 Sep 07; 32(35):9165-71. PubMed ID: 8396426
    [Abstract] [Full Text] [Related]

  • 6. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, Bowmaker JK.
    Photochem Photobiol; 2007 Sep 07; 83(2):303-10. PubMed ID: 17576346
    [Abstract] [Full Text] [Related]

  • 7. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM, Cowing JA, Wilkie SE, Parry JW, Poopalasundaram S, Bowmaker JK.
    Photochem Photobiol Sci; 2004 Aug 07; 3(8):713-20. PubMed ID: 15295625
    [Abstract] [Full Text] [Related]

  • 8. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N, Berova N, Nakanishi K.
    Chem Rec; 2004 Aug 07; 4(2):120-35. PubMed ID: 15073879
    [Abstract] [Full Text] [Related]

  • 9. Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium.
    Hao W, Fong HK.
    Biochemistry; 1996 May 21; 35(20):6251-6. PubMed ID: 8639565
    [Abstract] [Full Text] [Related]

  • 10. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW, Dukkipatti A, Max M, Knox BE, Birge RR.
    Biochemistry; 1999 Aug 31; 38(35):11287-97. PubMed ID: 10471278
    [Abstract] [Full Text] [Related]

  • 11. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H, Yoshizawa T.
    Photochem Photobiol; 2008 Aug 31; 84(4):985-9. PubMed ID: 18399914
    [Abstract] [Full Text] [Related]

  • 12. Absorption studies of neutral retinal Schiff base chromophores.
    Nielsen IB, Petersen MA, Lammich L, Nielsen MB, Andersen LH.
    J Phys Chem A; 2006 Nov 23; 110(46):12592-6. PubMed ID: 17107108
    [Abstract] [Full Text] [Related]

  • 13. Rapid release of retinal from a cone visual pigment following photoactivation.
    Chen MH, Kuemmel C, Birge RR, Knox BE.
    Biochemistry; 2012 May 22; 51(20):4117-25. PubMed ID: 22217337
    [Abstract] [Full Text] [Related]

  • 14. Multiple functions of Schiff base counterion in rhodopsins.
    Tsutsui K, Shichida Y.
    Photochem Photobiol Sci; 2010 Nov 22; 9(11):1426-34. PubMed ID: 20842311
    [Abstract] [Full Text] [Related]

  • 15. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K, Zvyaga TA, Sakmar TP, Siebert F.
    Biochemistry; 1996 Nov 26; 35(47):15065-73. PubMed ID: 8942673
    [Abstract] [Full Text] [Related]

  • 16. Kinetics of thermal activation of an ultraviolet cone pigment.
    Mooney V, Sekharan S, Liu J, Guo Y, Batista VS, Yan EC.
    J Am Chem Soc; 2015 Jan 14; 137(1):307-13. PubMed ID: 25514632
    [Abstract] [Full Text] [Related]

  • 17. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y, Terakita A, Shichida Y, Kandori H.
    Biochemistry; 2005 Jun 07; 44(22):7988-97. PubMed ID: 15924417
    [Abstract] [Full Text] [Related]

  • 18. On the molecular origin of photoreceptor noise.
    Barlow RB, Birge RR, Kaplan E, Tallent JR.
    Nature; 1993 Nov 04; 366(6450):64-6. PubMed ID: 8232538
    [Abstract] [Full Text] [Related]

  • 19. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R, Siebert F, Yan EC, Sakmar TP, Hirshfeld A, Sheves M.
    J Am Chem Soc; 2006 Aug 16; 128(32):10503-12. PubMed ID: 16895417
    [Abstract] [Full Text] [Related]

  • 20. Methyl substituents at the 11 or 12 position of retinal profoundly and differentially affect photochemistry and signalling activity of rhodopsin.
    Verhoeven MA, Bovee-Geurts PH, de Groot HJ, Lugtenburg J, DeGrip WJ.
    J Mol Biol; 2006 Oct 13; 363(1):98-113. PubMed ID: 16962138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 45.