These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 17481655
1. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. Max KE, Wunderlich M, Roske Y, Schmid FX, Heinemann U. J Mol Biol; 2007 Jun 15; 369(4):1087-97. PubMed ID: 17481655 [Abstract] [Full Text] [Related]
2. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. Wunderlich M, Martin A, Schmid FX. J Mol Biol; 2005 Apr 15; 347(5):1063-76. PubMed ID: 15784264 [Abstract] [Full Text] [Related]
3. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Mueller U, Perl D, Schmid FX, Heinemann U. J Mol Biol; 2000 Apr 07; 297(4):975-88. PubMed ID: 10736231 [Abstract] [Full Text] [Related]
4. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. Delbrück H, Mueller U, Perl D, Schmid FX, Heinemann U. J Mol Biol; 2001 Oct 19; 313(2):359-69. PubMed ID: 11800562 [Abstract] [Full Text] [Related]
5. In-vitro selection of highly stabilized protein variants with optimized surface. Martin A, Sieber V, Schmid FX. J Mol Biol; 2001 Jun 08; 309(3):717-26. PubMed ID: 11397091 [Abstract] [Full Text] [Related]
6. Electrostatic stabilization of a thermophilic cold shock protein. Perl D, Schmid FX. J Mol Biol; 2001 Oct 19; 313(2):343-57. PubMed ID: 11800561 [Abstract] [Full Text] [Related]
7. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins. Gribenko AV, Makhatadze GI. J Mol Biol; 2007 Feb 23; 366(3):842-56. PubMed ID: 17188709 [Abstract] [Full Text] [Related]
8. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I, Jakob RP, Dobbek H, Schmid FX. J Mol Biol; 2008 Oct 31; 383(1):238-51. PubMed ID: 18706424 [Abstract] [Full Text] [Related]
9. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM. J Mol Biol; 2004 Feb 27; 336(4):929-42. PubMed ID: 15095870 [Abstract] [Full Text] [Related]
10. In vitro evolution of a hyperstable Gbeta1 variant. Wunderlich M, Schmid FX. J Mol Biol; 2006 Oct 20; 363(2):545-57. PubMed ID: 16978647 [Abstract] [Full Text] [Related]
11. Two exposed amino acid residues confer thermostability on a cold shock protein. Perl D, Mueller U, Heinemann U, Schmid FX. Nat Struct Biol; 2000 May 20; 7(5):380-3. PubMed ID: 10802734 [Abstract] [Full Text] [Related]
12. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E, Rypniewski WR, Vorgias CR. Extremophiles; 2003 Apr 20; 7(2):111-22. PubMed ID: 12664263 [Abstract] [Full Text] [Related]
13. A stable disulfide-free gene-3-protein of phage fd generated by in vitro evolution. Kather I, Bippes CA, Schmid FX. J Mol Biol; 2005 Dec 02; 354(3):666-78. PubMed ID: 16259997 [Abstract] [Full Text] [Related]
14. Dimer formation of a stabilized Gbeta1 variant: a structural and energetic analysis. Thoms S, Max KE, Wunderlich M, Jacso T, Lilie H, Reif B, Heinemann U, Schmid FX. J Mol Biol; 2009 Sep 04; 391(5):918-32. PubMed ID: 19527728 [Abstract] [Full Text] [Related]
15. Changing the determinants of protein stability from covalent to non-covalent interactions by in vitro evolution: a structural and energetic analysis. Kather I, Jakob R, Dobbek H, Schmid FX. J Mol Biol; 2008 Sep 12; 381(4):1040-54. PubMed ID: 18621056 [Abstract] [Full Text] [Related]
16. Electrostatic contributions to the stability of a thermophilic cold shock protein. Zhou HX, Dong F. Biophys J; 2003 Apr 12; 84(4):2216-22. PubMed ID: 12668430 [Abstract] [Full Text] [Related]
17. Optimization of the gbeta1 domain by computational design and by in vitro evolution: structural and energetic basis of stabilization. Wunderlich M, Max KE, Roske Y, Mueller U, Heinemann U, Schmid FX. J Mol Biol; 2007 Oct 26; 373(3):775-84. PubMed ID: 17868696 [Abstract] [Full Text] [Related]
18. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM. J Mol Biol; 2004 Aug 27; 341(5):1271-81. PubMed ID: 15321721 [Abstract] [Full Text] [Related]
19. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB. Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U. J Mol Biol; 2006 Jul 14; 360(3):702-14. PubMed ID: 16780871 [Abstract] [Full Text] [Related]
20. Origins of the high stability of an in vitro-selected cold-shock protein. Martin A, Kather I, Schmid FX. J Mol Biol; 2002 May 17; 318(5):1341-9. PubMed ID: 12083522 [Abstract] [Full Text] [Related] Page: [Next] [New Search]