These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 17482351
21. Solid phase extraction method for the determination of lead, nickel, copper and manganese by flame atomic absorption spectrometry using sodium bispiperdine-1,1'-carbotetrathioate (Na-BPCTT) in water samples. Rekha D, Suvardhan K, Kumar JD, Subramanyam P, Prasad PR, Lingappa Y, Chiranjeevi P. J Hazard Mater; 2007 Jul 19; 146(1-2):131-6. PubMed ID: 17208372 [Abstract] [Full Text] [Related]
22. Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent. Dadfarnia S, Assadollahi T, Haji Shabani AM. J Hazard Mater; 2007 Sep 05; 148(1-2):446-52. PubMed ID: 17418486 [Abstract] [Full Text] [Related]
24. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. Soylak M, Erdogan ND. J Hazard Mater; 2006 Sep 21; 137(2):1035-41. PubMed ID: 16647202 [Abstract] [Full Text] [Related]
25. Indirect speciation of Cr(III) and Cr(VI) in water samples by selective separation and preconcentration on a newly synthesized chelating resin. Tokalioğlu S, Arsav S, Delibaş A, Soykan C. Anal Chim Acta; 2009 Jul 10; 645(1-2):36-41. PubMed ID: 19481628 [Abstract] [Full Text] [Related]
27. Simultaneous coprecipitation of lead, cobalt, copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxide prior to their flame atomic absorption spectrometric determination. Citak D, Tuzen M, Soylak M. Food Chem Toxicol; 2009 Sep 10; 47(9):2302-7. PubMed ID: 19539005 [Abstract] [Full Text] [Related]
30. Flame atomic absorption spectrometry for the determination of trace amount of rhodium after separation and preconcentration onto modified multiwalled carbon nanotubes as a new solid sorbent. Ghaseminezhad S, Afzali D, Taher MA. Talanta; 2009 Nov 15; 80(1):168-72. PubMed ID: 19782208 [Abstract] [Full Text] [Related]
31. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA. Baytak S, Türker AR. J Hazard Mater; 2006 Feb 28; 129(1-3):130-6. PubMed ID: 16198051 [Abstract] [Full Text] [Related]
34. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Tuzen M, Soylak M. J Hazard Mater; 2009 Mar 15; 162(2-3):724-9. PubMed ID: 18584957 [Abstract] [Full Text] [Related]
36. Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples. Tokalioğlu S, Yilmaz V, Kartal S, Delibaş A, Soykan C. J Hazard Mater; 2009 Sep 30; 169(1-3):593-8. PubMed ID: 19406573 [Abstract] [Full Text] [Related]
38. Carrier element-free coprecipitation (CEFC) method for the separation, preconcentration and speciation of chromium using an isatin derivative. Bulut VN, Ozdes D, Bekircan O, Gundogdu A, Duran C, Soylak M. Anal Chim Acta; 2009 Jan 19; 632(1):35-41. PubMed ID: 19100880 [Abstract] [Full Text] [Related]
39. Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection. Sang H, Liang P, Du D. J Hazard Mater; 2008 Jun 15; 154(1-3):1127-32. PubMed ID: 18082326 [Abstract] [Full Text] [Related]
40. Ligandless cloud point extraction of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions in environmental samples with Tween 80 and flame atomic absorption spectrometric determination. Candir S, Narin I, Soylak M. Talanta; 2008 Oct 19; 77(1):289-93. PubMed ID: 18804635 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]