These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 17482731
41. Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea. Beldowski J, Pempkowiak J. Chemosphere; 2003 Jul; 52(3):645-54. PubMed ID: 12738302 [Abstract] [Full Text] [Related]
42. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Chadwick SP, Babiarz CL, Hurley JP, Armstrong DE. Sci Total Environ; 2006 Sep 01; 368(1):177-88. PubMed ID: 16225911 [Abstract] [Full Text] [Related]
43. Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sediment core (Berg River, South Africa). Kading TJ, Mason RP, Leaner JJ. Mar Pollut Bull; 2009 Sep 01; 59(4-7):116-22. PubMed ID: 19321182 [Abstract] [Full Text] [Related]
44. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part II-evaluation of sorption materials. Randall PM, Yates BJ, Lal V, Darlington R, Fimmen R. Environ Res; 2013 Aug 01; 125():41-51. PubMed ID: 23735286 [Abstract] [Full Text] [Related]
45. Operationally defined mercury (Hg) species can delineate Hg bioaccumulation in mangrove sediment systems: A case study. Chennuri K, Chakraborty P, Jayachandran S, Mohakud SK, Ishita I, Ramteke D, Padalkar PP, Babu PC, Babu KR. Sci Total Environ; 2020 Jan 20; 701():134842. PubMed ID: 31734484 [Abstract] [Full Text] [Related]
46. Mercury-Organic Matter Interactions in Soils and Sediments: Angel or Devil? He M, Tian L, Braaten HFV, Wu Q, Luo J, Cai LM, Meng JH, Lin Y. Bull Environ Contam Toxicol; 2019 May 20; 102(5):621-627. PubMed ID: 30600387 [Abstract] [Full Text] [Related]
47. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Gilmour CC, Riedel GS, Riedel G, Kwon S, Landis R, Brown SS, Menzie CA, Ghosh U. Environ Sci Technol; 2013 Nov 19; 47(22):13001-10. PubMed ID: 24156748 [Abstract] [Full Text] [Related]
48. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Hare AA, Stern GA, Kuzyk ZZ, Macdonald RW, Johannessen SC, Wang F. Environ Sci Technol; 2010 Aug 01; 44(15):5805-11. PubMed ID: 20617840 [Abstract] [Full Text] [Related]
49. Using sequential extraction techniques to assess the partitioning of plutonium and neptunium-237 from multiple sources in sediments from the Ob River (Siberia). Kenna TC. J Environ Radioact; 2009 Jul 01; 100(7):547-57. PubMed ID: 19394119 [Abstract] [Full Text] [Related]
50. Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments. Kim M, Han S, Gieskes J, Deheyn DD. Sci Total Environ; 2011 Jan 15; 409(4):778-84. PubMed ID: 21109287 [Abstract] [Full Text] [Related]
51. Can Nassarius reticulatus be used as a bioindicator for Hg contamination? Results from a longitudinal study of the Portuguese coastline. Coelho JP, Pimenta J, Gomes R, Barroso CM, Pereira ME, Pardal MA, Duarte A. Mar Pollut Bull; 2006 Jun 15; 52(6):674-80. PubMed ID: 16337247 [Abstract] [Full Text] [Related]
52. Mercury alkylation in freshwater sediments from Scottish canals. Cavoura O, Brombach CC, Cortis R, Davidson CM, Gajdosechova Z, Keenan HE, Krupp EM. Chemosphere; 2017 Sep 15; 183():27-35. PubMed ID: 28531556 [Abstract] [Full Text] [Related]
53. Mercury contaminated sediment sites-an evaluation of remedial options. Randall PM, Chattopadhyay S. Environ Res; 2013 Aug 15; 125():131-49. PubMed ID: 23489986 [Abstract] [Full Text] [Related]
54. Substantial emission of gaseous monomethylmercury from contaminated water-sediment microcosms. Jonsson S, Skyllberg U, Björn E. Environ Sci Technol; 2010 Jan 01; 44(1):278-83. PubMed ID: 19950964 [Abstract] [Full Text] [Related]
55. Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size. Badin AL, Faure P, Bedell JP, Delolme C. Sci Total Environ; 2008 Sep 15; 403(1-3):178-87. PubMed ID: 18573517 [Abstract] [Full Text] [Related]
56. Nickel partitioning in formulated and natural freshwater sediments. Doig LE, Liber K. Chemosphere; 2006 Feb 15; 62(6):968-79. PubMed ID: 16122779 [Abstract] [Full Text] [Related]
57. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. Water Res; 2015 Sep 01; 80():245-55. PubMed ID: 26005785 [Abstract] [Full Text] [Related]
58. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Xiong Z, He F, Zhao D, Barnett MO. Water Res; 2009 Dec 01; 43(20):5171-9. PubMed ID: 19748651 [Abstract] [Full Text] [Related]
59. Mercury biomethylation assessment in the estuary of Bilbao (North of Spain). Raposo JC, Ozamiz G, Etxebarria N, Tueros I, Muñoz C, Muela A, Arana I, Barcina I. Environ Pollut; 2008 Nov 01; 156(2):482-8. PubMed ID: 18313183 [Abstract] [Full Text] [Related]
60. Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). Chattopadhyay S, Fimmen RL, Yates BJ, Lal V, Randall P. Int J Phytoremediation; 2012 Feb 01; 14(2):142-61. PubMed ID: 22567701 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]