These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
511 related items for PubMed ID: 17485471
1. SCOPE: a web server for practical de novo motif discovery. Carlson JM, Chakravarty A, DeZiel CE, Gross RH. Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W259-64. PubMed ID: 17485471 [Abstract] [Full Text] [Related]
2. A novel ensemble learning method for de novo computational identification of DNA binding sites. Chakravarty A, Carlson JM, Khetani RS, Gross RH. BMC Bioinformatics; 2007 Jul 12; 8():249. PubMed ID: 17626633 [Abstract] [Full Text] [Related]
3. STAMP: a web tool for exploring DNA-binding motif similarities. Mahony S, Benos PV. Nucleic Acids Res; 2007 Jul 12; 35(Web Server issue):W253-8. PubMed ID: 17478497 [Abstract] [Full Text] [Related]
4. MUSA: a parameter free algorithm for the identification of biologically significant motifs. Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT. Bioinformatics; 2006 Dec 15; 22(24):2996-3002. PubMed ID: 17068086 [Abstract] [Full Text] [Related]
5. Using SCOPE to identify potential regulatory motifs in coregulated genes. Martyanov V, Gross RH. J Vis Exp; 2011 May 31; (51):. PubMed ID: 21673638 [Abstract] [Full Text] [Related]
6. SPACER: identification of cis-regulatory elements with non-contiguous critical residues. Chakravarty A, Carlson JM, Khetani RS, DeZiel CE, Gross RH. Bioinformatics; 2007 Apr 15; 23(8):1029-31. PubMed ID: 17470480 [Abstract] [Full Text] [Related]
7. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches. Romer KA, Kayombya GR, Fraenkel E. Nucleic Acids Res; 2007 Jul 15; 35(Web Server issue):W217-20. PubMed ID: 17584794 [Abstract] [Full Text] [Related]
8. ClusterDraw web server: a tool to identify and visualize clusters of binding motifs for transcription factors. Papatsenko D. Bioinformatics; 2007 Apr 15; 23(8):1032-4. PubMed ID: 17308342 [Abstract] [Full Text] [Related]
9. Informative priors based on transcription factor structural class improve de novo motif discovery. Narlikar L, Gordân R, Ohler U, Hartemink AJ. Bioinformatics; 2006 Jul 15; 22(14):e384-92. PubMed ID: 16873497 [Abstract] [Full Text] [Related]
10. MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Tsai HK, Chou MY, Shih CH, Huang GT, Chang TH, Li WH. Nucleic Acids Res; 2007 Jul 15; 35(Web Server issue):W221-6. PubMed ID: 17537814 [Abstract] [Full Text] [Related]
11. Bounded search for de novo identification of degenerate cis-regulatory elements. Carlson JM, Chakravarty A, Khetani RS, Gross RH. BMC Bioinformatics; 2006 May 15; 7():254. PubMed ID: 16700920 [Abstract] [Full Text] [Related]
12. MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders. Wijaya E, Yiu SM, Son NT, Kanagasabai R, Sung WK. Bioinformatics; 2008 Oct 15; 24(20):2288-95. PubMed ID: 18697768 [Abstract] [Full Text] [Related]
13. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. Hu J, Yang YD, Kihara D. BMC Bioinformatics; 2006 Jul 13; 7():342. PubMed ID: 16839417 [Abstract] [Full Text] [Related]
14. On counting position weight matrix matches in a sequence, with application to discriminative motif finding. Sinha S. Bioinformatics; 2006 Jul 15; 22(14):e454-63. PubMed ID: 16873507 [Abstract] [Full Text] [Related]
15. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Narlikar L, Hartemink AJ. Bioinformatics; 2006 Jan 15; 22(2):157-63. PubMed ID: 16267080 [Abstract] [Full Text] [Related]
16. A generic motif discovery algorithm for sequential data. Jensen KL, Styczynski MP, Rigoutsos I, Stephanopoulos GN. Bioinformatics; 2006 Jan 01; 22(1):21-8. PubMed ID: 16257985 [Abstract] [Full Text] [Related]