These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Differential invasion of Candida albicans isolates in an in vitro model of oral candidosis. Bartie KL, Williams DW, Wilson MJ, Potts AJ, Lewis MA. Oral Microbiol Immunol; 2004 Oct; 19(5):293-6. PubMed ID: 15327640 [Abstract] [Full Text] [Related]
6. Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW. J Oral Pathol Med; 2011 May; 40(5):421-7. PubMed ID: 21158929 [Abstract] [Full Text] [Related]
7. The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Silva S, Hooper SJ, Henriques M, Oliveira R, Azeredo J, Williams DW. Clin Microbiol Infect; 2011 Feb; 17(2):264-72. PubMed ID: 20456460 [Abstract] [Full Text] [Related]
8. IL-1alpha, IL-1ra and IL-8 are differentially induced by Candida in experimental oral candidiasis. Jayatilake JA, Samaranayake LP, Lu Q, Jin LJ. Oral Dis; 2007 Jul; 13(4):426-33. PubMed ID: 17577331 [Abstract] [Full Text] [Related]
10. Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis. Lu Q, Jayatilake JA, Samaranayake LP, Jin L. J Invest Dermatol; 2006 Sep; 126(9):2049-56. PubMed ID: 16741514 [Abstract] [Full Text] [Related]
14. Potential role of Candida albicans secreted aspartic protease 9 in serum induced-hyphal formation and interaction with oral epithelial cells. Yang H, Tsang PCS, Pow EHN, Lam OLT, Tsang PW. Microb Pathog; 2020 Feb; 139():103896. PubMed ID: 31794816 [Abstract] [Full Text] [Related]
15. Oral epithelium-Candida glabrata interactions in vitro. Li L, Dongari-Bagtzoglou A. Oral Microbiol Immunol; 2007 Jun; 22(3):182-7. PubMed ID: 17488444 [Abstract] [Full Text] [Related]
16. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis. Lian CH, Liu WD. Mycoses; 2007 Sep; 50(5):383-90. PubMed ID: 17714358 [Abstract] [Full Text] [Related]
17. The involvement of physico-chemical interactions in the adhesion of Candida albicans and Candida dubliniensis to epithelial cells. Henriques M, Azeredo J, Oliveira R. Mycoses; 2007 Sep; 50(5):391-6. PubMed ID: 17714359 [Abstract] [Full Text] [Related]
18. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Stokes C, Moran GP, Spiering MJ, Cole GT, Coleman DC, Sullivan DJ. Fungal Genet Biol; 2007 Sep; 44(9):920-31. PubMed ID: 17251042 [Abstract] [Full Text] [Related]
19. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B. Cell Microbiol; 2007 Dec; 9(12):2938-54. PubMed ID: 17645752 [Abstract] [Full Text] [Related]
20. Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. Samaranayake YH, Dassanayake RS, Cheung BP, Jayatilake JA, Yeung KW, Yau JY, Samaranayake LP. APMIS; 2006 Dec; 114(12):857-66. PubMed ID: 17207086 [Abstract] [Full Text] [Related] Page: [Next] [New Search]