These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 17504982

  • 1. Microtubule-associated proteins as targets in cancer chemotherapy.
    Bhat KM, Setaluri V.
    Clin Cancer Res; 2007 May 15; 13(10):2849-54. PubMed ID: 17504982
    [Abstract] [Full Text] [Related]

  • 2. Dynamics of the mitotic spindle--potential therapeutic targets.
    Miyamoto DT, Perlman ZE, Mitchison TJ, Shirasu-Hiza M.
    Prog Cell Cycle Res; 2003 May 15; 5():349-60. PubMed ID: 14593729
    [Abstract] [Full Text] [Related]

  • 3. Microtubule assembly dynamics: an attractive target for anticancer drugs.
    Singh P, Rathinasamy K, Mohan R, Panda D.
    IUBMB Life; 2008 Jun 15; 60(6):368-75. PubMed ID: 18384115
    [Abstract] [Full Text] [Related]

  • 4. Microtubule alterations and resistance to tubulin-binding agents (review).
    Drukman S, Kavallaris M.
    Int J Oncol; 2002 Sep 15; 21(3):621-8. PubMed ID: 12168109
    [Abstract] [Full Text] [Related]

  • 5. Targeting survivin in cancer: patent review.
    Kanwar JR, Kamalapuram SK, Kanwar RK.
    Expert Opin Ther Pat; 2010 Dec 15; 20(12):1723-37. PubMed ID: 21083520
    [Abstract] [Full Text] [Related]

  • 6. Survival and apoptotic signals in the action of microtubule-targeting antitumor drugs.
    Mollinedo F.
    IDrugs; 2005 Feb 15; 8(2):127-43. PubMed ID: 15696415
    [Abstract] [Full Text] [Related]

  • 7. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment.
    Emanuele MJ, Stukenberg PT.
    Cell; 2007 Sep 07; 130(5):893-905. PubMed ID: 17803911
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A novel oral indoline-sulfonamide agent, N-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-isonicotinamide (J30), exhibits potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule.
    Liou JP, Hsu KS, Kuo CC, Chang CY, Chang JY.
    J Pharmacol Exp Ther; 2007 Oct 07; 323(1):398-405. PubMed ID: 17660383
    [Abstract] [Full Text] [Related]

  • 13. Microtubules: a dynamic target in cancer therapy.
    Pasquier E, Kavallaris M.
    IUBMB Life; 2008 Mar 07; 60(3):165-70. PubMed ID: 18380008
    [Abstract] [Full Text] [Related]

  • 14. Role of stathmin in the regulation of the mitotic spindle: potential applications in cancer therapy.
    Mistry SJ, Atweh GF.
    Mt Sinai J Med; 2002 Oct 07; 69(5):299-304. PubMed ID: 12415323
    [Abstract] [Full Text] [Related]

  • 15. Livin/ML-IAP as a new target for cancer treatment.
    Liu B, Han M, Wen JK, Wang L.
    Cancer Lett; 2007 Jun 08; 250(2):168-76. PubMed ID: 17218055
    [Abstract] [Full Text] [Related]

  • 16. Mechanisms for maintaining microtubule bundles.
    Bratman SV, Chang F.
    Trends Cell Biol; 2008 Dec 08; 18(12):580-6. PubMed ID: 18951798
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents.
    Wang H, Han H, Mousses S, Von Hoff DD.
    Semin Oncol; 2006 Aug 08; 33(4):513-20. PubMed ID: 16890805
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.