These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X, Miao X. J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [Abstract] [Full Text] [Related]
3. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS. J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [Abstract] [Full Text] [Related]
4. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Li M, Liu W, Sun J, Xianyu Y, Wang J, Zhang W, Zheng W, Huang D, Di S, Long YZ, Jiang X. ACS Appl Mater Interfaces; 2013 Jul 10; 5(13):5921-6. PubMed ID: 23790233 [Abstract] [Full Text] [Related]
7. Polymer-ceramic composite scaffold induces osteogenic differentiation of human mesenchymal stem cells. Leong NL, Jiang J, Lu HH. Conf Proc IEEE Eng Med Biol Soc; 2006 Jul 10; 2006():2651-4. PubMed ID: 17946970 [Abstract] [Full Text] [Related]
8. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. Kang SW, Yang HS, Seo SW, Han DK, Kim BS. J Biomed Mater Res A; 2008 Jun 01; 85(3):747-56. PubMed ID: 17896763 [Abstract] [Full Text] [Related]
9. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M. J Periodontal Res; 2015 Apr 01; 50(2):265-73. PubMed ID: 24966062 [Abstract] [Full Text] [Related]
10. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X. Acta Biomater; 2009 Sep 01; 5(7):2680-92. PubMed ID: 19376759 [Abstract] [Full Text] [Related]
11. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka AM. Biomed Mater; 2014 Oct 20; 9(6):065001. PubMed ID: 25329328 [Abstract] [Full Text] [Related]
12. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Lu HH, Tang A, Oh SC, Spalazzi JP, Dionisio K. Biomaterials; 2005 Nov 20; 26(32):6323-34. PubMed ID: 15919111 [Abstract] [Full Text] [Related]
13. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX, Ren J, Chen C, Ren TB, Zhou XY. J Biomater Appl; 2008 Mar 20; 22(5):409-32. PubMed ID: 17494961 [Abstract] [Full Text] [Related]
16. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang DA. Acta Biomater; 2009 Jun 20; 5(5):1697-707. PubMed ID: 19217361 [Abstract] [Full Text] [Related]