These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. Lai JI, Shafi KV, Ulman A, Loos K, Lee Y, Vogt T, Lee WL, Ong NP, Estournès C. J Phys Chem B; 2005 Jan 13; 109(1):15-8. PubMed ID: 16850974 [Abstract] [Full Text] [Related]
3. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis. Bomatí-Miguel O, Tartaj P, Morales MP, Bonville P, Golla-Schindler U, Zhao XQ, Veintemillas-Verdaguer S. Small; 2006 Dec 13; 2(12):1476-83. PubMed ID: 17193009 [Abstract] [Full Text] [Related]
4. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior. Kumar A, Singhal A. Nanotechnology; 2009 Jul 22; 20(29):295606. PubMed ID: 19567956 [Abstract] [Full Text] [Related]
5. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction. Pati RK, Lee IC, Hou S, Akhuemonkhan O, Gaskell KJ, Wang Q, Frenkel AI, Chu D, Salamanca-Riba LG, Ehrman SH. ACS Appl Mater Interfaces; 2009 Nov 22; 1(11):2624-35. PubMed ID: 20356136 [Abstract] [Full Text] [Related]
6. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature. Sivakumar M, Takami T, Ikuta H, Towata A, Yasui K, Tuziuti T, Kozuka T, Bhattacharya D, Iida Y. J Phys Chem B; 2006 Aug 10; 110(31):15234-43. PubMed ID: 16884240 [Abstract] [Full Text] [Related]
8. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y. J Am Chem Soc; 2009 Jul 01; 131(25):8824-32. PubMed ID: 19496564 [Abstract] [Full Text] [Related]
9. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. Langmuir; 2007 Apr 10; 23(8):4583-8. PubMed ID: 17355158 [Abstract] [Full Text] [Related]
10. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Chen S, Li Y, Guo C, Wang J, Ma J, Liang X, Yang LR, Liu HZ. Langmuir; 2007 Dec 04; 23(25):12669-76. PubMed ID: 17988160 [Abstract] [Full Text] [Related]
11. Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. Park CD, Walker J, Tannenbaum R, Stiegman AE, Frydrych J, Machala L. ACS Appl Mater Interfaces; 2009 Sep 04; 1(9):1843-6. PubMed ID: 20355802 [Abstract] [Full Text] [Related]
12. Preparation and characterization of silica coated iron oxide magnetic nano-particles. Li YS, Church JS, Woodhead AL, Moussa F. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep 01; 76(5):484-9. PubMed ID: 20452273 [Abstract] [Full Text] [Related]
13. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y, Margel S. J Colloid Interface Sci; 2008 Jan 01; 317(1):101-14. PubMed ID: 17927999 [Abstract] [Full Text] [Related]
14. Magnetic multilamellar liposomes produced by in situ synthesis of iron oxide nanoparticles: "magnetonions". Faure C, Meyre ME, Trépout S, Lambert O, Lebraud E. J Phys Chem B; 2009 Jun 25; 113(25):8552-9. PubMed ID: 19534563 [Abstract] [Full Text] [Related]
15. Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous iron III nitrate in sols of spherical silica particles. Khalil KM, Mahmoud HA, Ali TT. Langmuir; 2008 Feb 05; 24(3):1037-43. PubMed ID: 18177061 [Abstract] [Full Text] [Related]