These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Zdanowicz A, Thermann R, Kowalska J, Jemielity J, Duncan K, Preiss T, Darzynkiewicz E, Hentze MW. Mol Cell; 2009 Sep 24; 35(6):881-8. PubMed ID: 19782035 [Abstract] [Full Text] [Related]
3. Lipoxygenase mRNA silencing in erythroid differentiation: The 3'UTR regulatory complex controls 60S ribosomal subunit joining. Ostareck DH, Ostareck-Lederer A, Shatsky IN, Hentze MW. Cell; 2001 Jan 26; 104(2):281-90. PubMed ID: 11207368 [Abstract] [Full Text] [Related]
4. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. Hernández G, Vázquez-Pianzola P, Sierra JM, Rivera-Pomar R. RNA; 2004 Nov 26; 10(11):1783-97. PubMed ID: 15496524 [Abstract] [Full Text] [Related]
5. The SXL-UNR corepressor complex uses a PABP-mediated mechanism to inhibit ribosome recruitment to msl-2 mRNA. Duncan KE, Strein C, Hentze MW. Mol Cell; 2009 Nov 25; 36(4):571-82. PubMed ID: 19941818 [Abstract] [Full Text] [Related]
6. Different modes of translation for hid, grim and sickle mRNAs in Drosophila. Vazquez-Pianzola P, Hernández G, Suter B, Rivera-Pomar R. Cell Death Differ; 2007 Feb 25; 14(2):286-95. PubMed ID: 16794603 [Abstract] [Full Text] [Related]
7. Translation factors promote the formation of two states of the closed-loop mRNP. Amrani N, Ghosh S, Mangus DA, Jacobson A. Nature; 2008 Jun 26; 453(7199):1276-80. PubMed ID: 18496529 [Abstract] [Full Text] [Related]
12. Inhibition by suramin of protein synthesis in vitro. Ribosomes as the target of the drug. Brigotti M, Alfieri RR, Petronini PG, Carnicelli D. Biochimie; 2006 May 26; 88(5):497-503. PubMed ID: 16386828 [Abstract] [Full Text] [Related]
13. Formation of New Polysomes on Free mRNAs in a Cell-Free Translation Systems Is Accompanied by Partial Disassembly of Previously Formed Polysomes. Sogorin EA, Agalarov SCh, Spirin AS. Biochemistry (Mosc); 2015 Oct 26; 80(10):1327-30. PubMed ID: 26567577 [Abstract] [Full Text] [Related]
14. [Translational control in Drosophila development]. Sato K, Nakamura A. Tanpakushitsu Kakusan Koso; 2006 Dec 26; 51(16 Suppl):2536-43. PubMed ID: 17471975 [No Abstract] [Full Text] [Related]
15. Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Kopeina GS, Afonina ZA, Gromova KV, Shirokov VA, Vasiliev VD, Spirin AS. Nucleic Acids Res; 2008 May 26; 36(8):2476-88. PubMed ID: 18310103 [Abstract] [Full Text] [Related]
16. Direct ribosomal binding by a cellular inhibitor of translation. Colón-Ramos DA, Shenvi CL, Weitzel DH, Gan EC, Matts R, Cate J, Kornbluth S. Nat Struct Mol Biol; 2006 Feb 26; 13(2):103-11. PubMed ID: 16429152 [Abstract] [Full Text] [Related]
17. Translation attenuation via 3' terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk. Kim JJ, Yu J, Bag J, Bakovic M, Cant JP. RNA Biol; 2015 Feb 26; 12(3):354-67. PubMed ID: 25826667 [Abstract] [Full Text] [Related]
18. miRNP:mRNA association in polyribosomes in a human neuronal cell line. Nelson PT, Hatzigeorgiou AG, Mourelatos Z. RNA; 2004 Mar 26; 10(3):387-94. PubMed ID: 14970384 [Abstract] [Full Text] [Related]
19. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Genes Dev; 2007 Aug 01; 21(15):1857-62. PubMed ID: 17671087 [Abstract] [Full Text] [Related]
20. A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Beckmann K, Grskovic M, Gebauer F, Hentze MW. Cell; 2005 Aug 26; 122(4):529-40. PubMed ID: 16122421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]