These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 17514494

  • 1. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation.
    Yang SY, Lü FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B.
    Amino Acids; 2008 Apr; 34(3):473-8. PubMed ID: 17514494
    [Abstract] [Full Text] [Related]

  • 2. Influence of heat impact in reconstituted skim milk on the properties of yoghurt fermented by ropy or non-ropy starter cultures.
    Lorenzen PC, Ebert Y, Clawin-Rädecker I, Schlimme E.
    Nahrung; 2003 Oct; 47(5):349-53. PubMed ID: 14609093
    [Abstract] [Full Text] [Related]

  • 3. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275.
    Zisu B, Shah NP.
    J Dairy Sci; 2003 Nov; 86(11):3405-15. PubMed ID: 14672169
    [Abstract] [Full Text] [Related]

  • 4. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium.
    Vaningelgem F, Zamfir M, Adriany T, De Vuyst L.
    J Appl Microbiol; 2004 Nov; 97(6):1257-73. PubMed ID: 15546417
    [Abstract] [Full Text] [Related]

  • 5. Proteolytic degradation of ewe milk proteins during fermentation of yoghurts and storage.
    El-Zahar K, Chobert JM, Sitohy M, Dalgalarrondo M, Haertlé T.
    Nahrung; 2003 Jun; 47(3):199-206. PubMed ID: 12866624
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.
    Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ.
    J Dairy Sci; 2015 Apr; 98(4):2138-49. PubMed ID: 25622870
    [Abstract] [Full Text] [Related]

  • 7. Purification and biochemical characterisation of a novel glutamate decarboxylase from rice bran.
    Wang L, Xu DX, Lv YG, Zhang H.
    J Sci Food Agric; 2010 Apr 30; 90(6):1027-33. PubMed ID: 20355143
    [Abstract] [Full Text] [Related]

  • 8. Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA.
    Huang J, Mei LH, Xia J.
    Biotechnol Bioeng; 2007 Apr 01; 96(5):924-31. PubMed ID: 16952178
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som).
    Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S.
    World J Microbiol Biotechnol; 2017 Aug 01; 33(8):152. PubMed ID: 28674926
    [Abstract] [Full Text] [Related]

  • 10. Production of gamma-aminobutyric acid by cheese starters during cheese ripening.
    Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I.
    J Dairy Sci; 1998 Jun 01; 81(6):1486-91. PubMed ID: 9684157
    [Abstract] [Full Text] [Related]

  • 11. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.
    Tung YT, Lee BH, Liu CF, Pan TM.
    J Food Sci; 2011 Jun 01; 76(9):M585-91. PubMed ID: 22416709
    [Abstract] [Full Text] [Related]

  • 12. Characterization of a Glutamate Decarboxylase (GAD) from Enterococcus avium M5 Isolated from Jeotgal, a Korean Fermented Seafood.
    Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH.
    J Microbiol Biotechnol; 2017 Jul 28; 27(7):1216-1222. PubMed ID: 28438014
    [Abstract] [Full Text] [Related]

  • 13. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk.
    Izawa N, Hanamizu T, Sone T, Chiba K.
    J Biosci Bioeng; 2010 Apr 28; 109(4):356-60. PubMed ID: 20226377
    [Abstract] [Full Text] [Related]

  • 14. Fermented goats' milk produced with selected multiple starters as a potentially functional food.
    Minervini F, Bilancia MT, Siragusa S, Gobbetti M, Caponio F.
    Food Microbiol; 2009 Sep 28; 26(6):559-64. PubMed ID: 19527829
    [Abstract] [Full Text] [Related]

  • 15. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei.
    Komatsuzaki N, Nakamura T, Kimura T, Shima J.
    Biosci Biotechnol Biochem; 2008 Feb 28; 72(2):278-85. PubMed ID: 18256502
    [Abstract] [Full Text] [Related]

  • 16. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools.
    Sonnewald U, Kortner TM, Qu H, Olstad E, Suñol C, Bak LK, Schousboe A, Waagepetersen HS.
    Neurochem Int; 2006 Feb 28; 48(6-7):572-8. PubMed ID: 16516347
    [Abstract] [Full Text] [Related]

  • 17. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production.
    Lin Q.
    Braz J Microbiol; 2013 Feb 28; 44(1):183-7. PubMed ID: 24159304
    [Abstract] [Full Text] [Related]

  • 18. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli.
    Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A.
    Enzyme Microb Technol; 2012 Aug 10; 51(3):171-6. PubMed ID: 22759537
    [Abstract] [Full Text] [Related]

  • 19. Effects of cultivar and culture conditions on gamma-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.).
    Li Y, Bai Q, Jin X, Wen H, Gu Z.
    J Sci Food Agric; 2010 Jan 15; 90(1):52-7. PubMed ID: 20355011
    [Abstract] [Full Text] [Related]

  • 20. Optimized cultural conditions of functional yogurt for γ-aminobutyric acid augmentation using response surface methodology.
    Chen L, Alcazar J, Yang T, Lu Z, Lu Y.
    J Dairy Sci; 2018 Dec 15; 101(12):10685-10693. PubMed ID: 30292548
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.