These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Yeast prions, mammalian amyloidoses, and the problem of proteomic networks]. Galkin AP, Mironova LN, Zhuravleva GA, Inge-Vechtomov SG. Genetika; 2006 Nov; 42(11):1558-70. PubMed ID: 17163073 [Abstract] [Full Text] [Related]
3. [Yeast prions as a model of neurodegenerative infectious amyloidoses in humans]. Inge-Vechtomov SG. Ontogenez; 2011 Nov; 42(5):337-45. PubMed ID: 22145302 [Abstract] [Full Text] [Related]
4. [Can prion-like propagation occur in neurodegenerative diseases?: in view of transmissible systemic amyloidosis]. Yoshida K, Higuchi K, Ikeda S. Brain Nerve; 2012 Jun; 64(6):665-74. PubMed ID: 22647474 [Abstract] [Full Text] [Related]
5. [Yeast as a model for studying the prion and amyloid occurrence]. Kryndushkin DS, Aleksandrov IM, Kushnirov VV, Ter-Avanesian MD. Ross Fiziol Zh Im I M Sechenova; 2004 May; 90(5):645-57. PubMed ID: 15341089 [Abstract] [Full Text] [Related]
6. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion]. Ishikawa T. Postepy Biochem; 2007 May; 53(2):182-7. PubMed ID: 17969880 [Abstract] [Full Text] [Related]
7. Using budding yeast to screen for anti-prion drugs. Tribouillard D, Bach S, Gug F, Desban N, Beringue V, Andrieu T, Dormont D, Galons H, Laude H, Vilette D, Blondel M. Biotechnol J; 2006 Jan; 1(1):58-67. PubMed ID: 16892225 [Abstract] [Full Text] [Related]
10. The physical basis of how prion conformations determine strain phenotypes. Tanaka M, Collins SR, Toyama BH, Weissman JS. Nature; 2006 Aug 03; 442(7102):585-9. PubMed ID: 16810177 [Abstract] [Full Text] [Related]
11. Peptide sequences converting polyglutamine into a prion in yeast. Odani W, Urata K, Okuda M, Okuma S, Koyama H, Pack CG, Fujiwara K, Nojima T, Kinjo M, Kawai-Noma S, Taguchi H. FEBS J; 2015 Feb 03; 282(3):477-90. PubMed ID: 25406629 [Abstract] [Full Text] [Related]
12. Prion-like aggregates: infectious agents in human disease. Westermark GT, Westermark P. Trends Mol Med; 2010 Nov 03; 16(11):501-7. PubMed ID: 20870462 [Abstract] [Full Text] [Related]
13. Amyloid and prions: some biochemical investigations of cerebral amyloidosis in mice. Hope J, Kirby L. Folia Neuropathol; 2012 Nov 03; 50(1):13-9. PubMed ID: 22505360 [Abstract] [Full Text] [Related]
14. Protein misfolding and neurodegeneration. Soto C, Estrada LD. Arch Neurol; 2008 Feb 03; 65(2):184-9. PubMed ID: 18268186 [Abstract] [Full Text] [Related]
15. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Soto C, Estrada L, Castilla J. Trends Biochem Sci; 2006 Mar 03; 31(3):150-5. PubMed ID: 16473510 [Abstract] [Full Text] [Related]
17. [Biological functions of amyloids: facts and hypotheses]. Mironova LN, Goginashvili AI, Ter-Avanesian MD. Mol Biol (Mosk); 2008 Feb 01; 42(5):798-808. PubMed ID: 18988529 [Abstract] [Full Text] [Related]
18. Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. Guest WC, Silverman JM, Pokrishevsky E, O'Neill MA, Grad LI, Cashman NR. J Toxicol Environ Health A; 2011 Feb 01; 74(22-24):1433-59. PubMed ID: 22043906 [Abstract] [Full Text] [Related]
19. Hsp104: a weapon to combat diverse neurodegenerative disorders. Shorter J. Neurosignals; 2008 Feb 01; 16(1):63-74. PubMed ID: 18097161 [Abstract] [Full Text] [Related]
20. Amyloid fibrils of mammalian prion protein induce axonal degeneration in NTERA2-derived terminally differentiated neurons. Novitskaya V, Makarava N, Sylvester I, Bronstein IB, Baskakov IV. J Neurochem; 2007 Jul 01; 102(2):398-407. PubMed ID: 17472702 [Abstract] [Full Text] [Related] Page: [Next] [New Search]