These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 1751517
1. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti). Young JD, Fincham DA, Harvey CM. Biochim Biophys Acta; 1991 Nov 18; 1070(1):111-8. PubMed ID: 1751517 [Abstract] [Full Text] [Related]
2. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes. Young JD, Mason DK, Fincham DA. J Biol Chem; 1988 Jan 05; 263(1):140-3. PubMed ID: 3121605 [Abstract] [Full Text] [Related]
3. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ, Campione AL, Gorman JM. Biochim Biophys Acta; 1990 Jun 27; 1025(2):215-24. PubMed ID: 2114171 [Abstract] [Full Text] [Related]
4. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA, Mason DK, Young JD. Biochim Biophys Acta; 1988 Jan 13; 937(1):184-94. PubMed ID: 3334844 [Abstract] [Full Text] [Related]
5. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations. Angelo S, Irarrázabal C, Devés R. J Membr Biol; 1996 Sep 13; 153(1):37-44. PubMed ID: 8694905 [Abstract] [Full Text] [Related]
6. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. Devés R, Angelo S, Chávez P. J Physiol; 1993 Aug 13; 468():753-66. PubMed ID: 8254535 [Abstract] [Full Text] [Related]
7. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii). Fincham DA, Ellory JC, Young JD. Can J Physiol Pharmacol; 1992 Aug 13; 70(8):1117-27. PubMed ID: 1473044 [Abstract] [Full Text] [Related]
8. Nucleoside uptake by red blood cells from a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), is mediated by a nitrobenzylthioinosine-insensitive transport system. Fincham DA, Wolowyk MW, Young JD. Biochim Biophys Acta; 1991 Oct 14; 1069(1):123-6. PubMed ID: 1932045 [Abstract] [Full Text] [Related]
9. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells. Young JD, Wolowyk MW, Jones SM, Ellory JC. Biochem J; 1983 Nov 15; 216(2):349-57. PubMed ID: 6661202 [Abstract] [Full Text] [Related]
10. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. Angelo S, Devés R. J Membr Biol; 1994 Aug 15; 141(2):183-92. PubMed ID: 7807519 [Abstract] [Full Text] [Related]
11. System y+L: the broad scope and cation modulated amino acid transporter. Devés R, Angelo S, Rojas AM. Exp Physiol; 1998 Mar 15; 83(2):211-20. PubMed ID: 9568481 [Abstract] [Full Text] [Related]
12. Amino acid transport in human and in sheep erythrocytes. Young JD, Jones SE, Ellory JC. Proc R Soc Lond B Biol Sci; 1980 Sep 26; 209(1176):355-75. PubMed ID: 6109287 [Abstract] [Full Text] [Related]
13. The cation receptor subsite of the choline transporter in preimplantation mouse conceptuses resembles a cation receptor subsite of several amino acid transporters. Van Winkle LJ, Campione AL, Mann DF, Wasserlauf HG. Biochim Biophys Acta; 1993 Feb 23; 1146(1):38-44. PubMed ID: 8443225 [Abstract] [Full Text] [Related]
14. Characterization of threonine transport into a kidney epithelial cell line (BSC-1). Evidence for the presence of Na(+)-independent system asc [corrected]. Kuhlmann MK, Vadgama JV. J Biol Chem; 1991 Aug 15; 266(23):15042-7. PubMed ID: 1907970 [Abstract] [Full Text] [Related]
15. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes. Vargas M, Devés R. J Membr Biol; 2001 Oct 01; 183(3):183-93. PubMed ID: 11696860 [Abstract] [Full Text] [Related]
16. Na-dependent glutamate transport in high K and high glutathione (HK/HG) and high K and low glutathione (HK/LG) dog red blood cells. Fujise H, Hamada Y, Mori M, Ochiai H. Biochim Biophys Acta; 1995 Oct 04; 1239(1):22-6. PubMed ID: 7548139 [Abstract] [Full Text] [Related]
17. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. Devés R, Chavez P, Boyd CA. J Physiol; 1992 Aug 04; 454():491-501. PubMed ID: 1474499 [Abstract] [Full Text] [Related]
18. Inhibition of glucose transport in human erythrocytes by 2,3-dioxoindole (isatin). Gargari ML, Bansal RC, Singh K, Mahmood A. Experientia; 1994 Sep 15; 50(9):833-6. PubMed ID: 7925850 [Abstract] [Full Text] [Related]
19. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes. Fincham DA, Mason DK, Young JD. Biochem J; 1985 Apr 01; 227(1):13-20. PubMed ID: 3994678 [Abstract] [Full Text] [Related]
20. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation. Fincham DA, Mason DK, Paterson JY, Young JD. J Physiol; 1987 Aug 01; 389():385-409. PubMed ID: 3681732 [Abstract] [Full Text] [Related] Page: [Next] [New Search]