These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 17515905

  • 1. The redox-switch domain of Hsp33 functions as dual stress sensor.
    Ilbert M, Horst J, Ahrens S, Winter J, Graf PC, Lilie H, Jakob U.
    Nat Struct Mol Biol; 2007 Jun; 14(6):556-63. PubMed ID: 17515905
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
    Rimon O, Suss O, Goldenberg M, Fassler R, Yogev O, Amartely H, Propper G, Friedler A, Reichmann D.
    Antioxid Redox Signal; 2017 Nov 20; 27(15):1252-1267. PubMed ID: 28394178
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Chaperone activity with a redox switch.
    Jakob U, Muse W, Eser M, Bardwell JC.
    Cell; 1999 Feb 05; 96(3):341-52. PubMed ID: 10025400
    [Abstract] [Full Text] [Related]

  • 7. Identification of a redox-regulated chaperone network.
    Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U.
    EMBO J; 2004 Jan 14; 23(1):160-8. PubMed ID: 14685279
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae.
    Wholey WY, Jakob U.
    Mol Microbiol; 2012 Mar 14; 83(5):981-91. PubMed ID: 22296329
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Protein unfolding as a switch from self-recognition to high-affinity client binding.
    Groitl B, Horowitz S, Makepeace KAT, Petrotchenko EV, Borchers CH, Reichmann D, Bardwell JCA, Jakob U.
    Nat Commun; 2016 Jan 20; 7():10357. PubMed ID: 26787517
    [Abstract] [Full Text] [Related]

  • 14. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R, Edinger N, Rimon O, Reichmann D.
    J Vis Exp; 2018 Jun 07; (136):. PubMed ID: 29939186
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism.
    Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS.
    Structure; 2004 Oct 07; 12(10):1901-7. PubMed ID: 15458638
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J, Mukhergee MK, Graumann J, Jakob U, Saper MA.
    Structure; 2001 May 09; 9(5):367-75. PubMed ID: 11377197
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.