These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 17516627
1. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin. Wehbi H, Rath A, Glibowicka M, Deber CM. Biochemistry; 2007 Jun 19; 46(24):7099-106. PubMed ID: 17516627 [Abstract] [Full Text] [Related]
2. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Choi MY, Cardarelli L, Therien AG, Deber CM. Biochemistry; 2004 Jun 29; 43(25):8077-83. PubMed ID: 15209503 [Abstract] [Full Text] [Related]
3. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides. Mulvihill CM, Deber CM. Biochim Biophys Acta; 2012 Jan 29; 1818(1):49-54. PubMed ID: 21996038 [Abstract] [Full Text] [Related]
6. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor. Lazarova T, Brewin KA, Stoeber K, Robinson CR. Biochemistry; 2004 Oct 12; 43(40):12945-54. PubMed ID: 15461468 [Abstract] [Full Text] [Related]
7. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC, Vijayakumar S, Jones JD, Slaughter C, Thomas PJ. Biochemistry; 1998 Jan 20; 37(3):844-53. PubMed ID: 9454574 [Abstract] [Full Text] [Related]
8. Structural effects of extracellular loop mutations in CFTR helical hairpins. Chang YH, Stone TA, Chin S, Glibowicka M, Bear CE, Deber CM. Biochim Biophys Acta Biomembr; 2018 May 20; 1860(5):1092-1098. PubMed ID: 29307731 [Abstract] [Full Text] [Related]
9. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. Wehbi H, Gasmi-Seabrook G, Choi MY, Deber CM. Biochim Biophys Acta; 2008 Jan 20; 1778(1):79-87. PubMed ID: 17949679 [Abstract] [Full Text] [Related]
11. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation. Massiah MA, Ko YH, Pedersen PL, Mildvan AS. Biochemistry; 1999 Jun 08; 38(23):7453-61. PubMed ID: 10360942 [Abstract] [Full Text] [Related]
12. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage. Melnyk RA, Partridge AW, Deber CM. J Mol Biol; 2002 Jan 04; 315(1):63-72. PubMed ID: 11771966 [Abstract] [Full Text] [Related]
13. Hydrophobic helical hairpins: design and packing interactions in membrane environments. Johnson RM, Heslop CL, Deber CM. Biochemistry; 2004 Nov 16; 43(45):14361-9. PubMed ID: 15533040 [Abstract] [Full Text] [Related]
14. Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding. Taddei N, Chiti F, Fiaschi T, Bucciantini M, Capanni C, Stefani M, Serrano L, Dobson CM, Ramponi G. J Mol Biol; 2000 Jul 14; 300(3):633-47. PubMed ID: 10884358 [Abstract] [Full Text] [Related]
16. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator. Therien AG, Glibowicka M, Deber CM. Protein Expr Purif; 2002 Jun 14; 25(1):81-6. PubMed ID: 12071702 [Abstract] [Full Text] [Related]