These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 17518275

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Improving reliability and accuracy of vibration parameters of vocal folds based on high-speed video and electroglottography.
    Qin X, Wang S, Wan M.
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1744-54. PubMed ID: 19272979
    [Abstract] [Full Text] [Related]

  • 3. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.
    Zhang Y, Tao C, Jiang JJ.
    Chaos; 2006 Jun; 16(2):023118. PubMed ID: 16822021
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J, Eysholdt U, Toy H, Dollinger M.
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U.
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [Abstract] [Full Text] [Related]

  • 10. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 11. A new generation videokymography for routine clinical vocal fold examination.
    Qiu Q, Schutte HK.
    Laryngoscope; 2006 Oct; 116(10):1824-8. PubMed ID: 17003719
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G, Kniesburges S, Zimmermann M, Sutor A, Eysholdt U, Döllinger M.
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Analysis of vocal-fold vibrations from high-speed laryngeal images using a Hilbert transform-based methodology.
    Yan Y, Ahmad K, Kunduk M, Bless D.
    J Voice; 2005 Jun; 19(2):161-75. PubMed ID: 15907431
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network.
    Fehling MK, Grosch F, Schuster ME, Schick B, Lohscheller J.
    PLoS One; 2020 Jun; 15(2):e0227791. PubMed ID: 32040514
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.