These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The impact of glottal area discontinuities on block-type vocal fold models with asymmetric tissue properties. Sommer DE, Erath BD, Zañartu M, Peterson SD. J Acoust Soc Am; 2013 Mar; 133(3):EL214-20. PubMed ID: 23464131 [Abstract] [Full Text] [Related]
24. Development of videostrobokymography for the quantitative analysis of laryngeal vibratory pattern. Lee JS, Kim E, Park KS, Sung MY, Sung MW, Kim KH. Stud Health Technol Inform; 1998 Mar; 52 Pt 2():1022-4. PubMed ID: 10384614 [Abstract] [Full Text] [Related]
26. Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Döllinger M. Med Image Anal; 2007 Aug; 11(4):400-13. PubMed ID: 17544839 [Abstract] [Full Text] [Related]
27. Efficient and effective extraction of vocal fold vibratory patterns from high-speed digital imaging. Zhang Y, Bieging E, Tsui H, Jiang JJ. J Voice; 2010 Jan; 24(1):21-9. PubMed ID: 18504109 [Abstract] [Full Text] [Related]
28. Preprocessing techniques for high-speed videoendoscopy analysis. Ikuma T, Kunduk M, McWhorter AJ. J Voice; 2013 Jul; 27(4):500-5. PubMed ID: 23490125 [Abstract] [Full Text] [Related]
30. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica. Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X. J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840 [Abstract] [Full Text] [Related]
35. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation. Bailly L, Pelorson X, Henrich N, Ruty N. J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812 [Abstract] [Full Text] [Related]
36. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Herbst CT, Lohscheller J, Švec JG, Henrich N, Weissengruber G, Fitch WT. J Exp Biol; 2014 Mar 15; 217(Pt 6):955-63. PubMed ID: 24622896 [Abstract] [Full Text] [Related]
37. Objective quantification of pre- and postphonosurgery vocal fold vibratory characteristics using high-speed videoendoscopy and a harmonic waveform model. Ikuma T, Kunduk M, McWhorter AJ. J Speech Lang Hear Res; 2014 Jun 01; 57(3):743-57. PubMed ID: 24167233 [Abstract] [Full Text] [Related]
38. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation. Spencer M, Siegmund T, Mongeau L. J Acoust Soc Am; 2008 Feb 01; 123(2):1089-103. PubMed ID: 18247910 [Abstract] [Full Text] [Related]
39. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis. Fulcher LP, Scherer RC, Zhai G, Zhu Z. J Voice; 2006 Dec 01; 20(4):489-512. PubMed ID: 16434169 [Abstract] [Full Text] [Related]
40. Experimental study of the effects of surface mucus viscosity on the glottic cycle. Ayache S, Ouaknine M, Dejonkere P, Prindere P, Giovanni A. J Voice; 2004 Mar 01; 18(1):107-15. PubMed ID: 15070230 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]