These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 17523600

  • 1. Long-range structural and dynamical changes induced by cofactor binding in DNA methyltransferase M.HhaI.
    Zhou H, Shatz W, Purdy MM, Fera N, Dahlquist FW, Reich NO.
    Biochemistry; 2007 Jun 19; 46(24):7261-8. PubMed ID: 17523600
    [Abstract] [Full Text] [Related]

  • 2. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B, Shieh FK, De Los Rios S, Perona JJ, Reich NO.
    J Mol Biol; 2006 Sep 15; 362(2):334-46. PubMed ID: 16919299
    [Abstract] [Full Text] [Related]

  • 3. [Probing of contacts between EcoRII DNA methyltransferase and DNA using substrate analogs and molecular modeling].
    Kudan EV, Brevnov MG, Subach OM, Rechkoblit OA, Buĭnitskiĭ IaM, Gromova ES.
    Mol Biol (Mosk); 2007 Sep 15; 41(5):885-99. PubMed ID: 18240571
    [Abstract] [Full Text] [Related]

  • 4. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK, Youngblood B, Reich NO.
    J Mol Biol; 2006 Sep 22; 362(3):516-27. PubMed ID: 16926025
    [Abstract] [Full Text] [Related]

  • 5. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A, Kienhöfer A, Hilvert D, Pervushin K.
    Biochemistry; 2005 May 10; 44(18):6788-99. PubMed ID: 15865424
    [Abstract] [Full Text] [Related]

  • 6. Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase.
    Merkiene E, Klimasauskas S.
    Nucleic Acids Res; 2005 May 10; 33(1):307-15. PubMed ID: 15653631
    [Abstract] [Full Text] [Related]

  • 7. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase.
    O'Gara M, Roberts RJ, Cheng X.
    J Mol Biol; 1996 Nov 08; 263(4):597-606. PubMed ID: 8918941
    [Abstract] [Full Text] [Related]

  • 8. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B, Shieh FK, Buller F, Bullock T, Reich NO.
    Biochemistry; 2007 Jul 31; 46(30):8766-75. PubMed ID: 17616174
    [Abstract] [Full Text] [Related]

  • 9. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H, Marquez VE, Marasco CJ, Sufrin JR, O'gara M, Cheng X.
    J Mol Biol; 1999 Feb 05; 285(5):2021-34. PubMed ID: 9925782
    [Abstract] [Full Text] [Related]

  • 10. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI.
    Youngblood B, Buller F, Reich NO.
    Biochemistry; 2006 Dec 26; 45(51):15563-72. PubMed ID: 17176077
    [Abstract] [Full Text] [Related]

  • 11. The mechanism of target base attack in DNA cytosine carbon 5 methylation.
    Svedruzić ZM, Reich NO.
    Biochemistry; 2004 Sep 14; 43(36):11460-73. PubMed ID: 15350132
    [Abstract] [Full Text] [Related]

  • 12. Mechanism of DNA methylation: the double role of DNA as a substrate and as a cofactor.
    Zangi R, Arrieta A, Cossío FP.
    J Mol Biol; 2010 Jul 16; 400(3):632-44. PubMed ID: 20471982
    [Abstract] [Full Text] [Related]

  • 13. The recognition pathway for the DNA cytosine methyltransferase M.HhaI.
    Zhou H, Purdy MM, Dahlquist FW, Reich NO.
    Biochemistry; 2009 Aug 25; 48(33):7807-16. PubMed ID: 19580326
    [Abstract] [Full Text] [Related]

  • 14. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition.
    Svedruzić ZM, Reich NO.
    Biochemistry; 2005 Jul 12; 44(27):9472-85. PubMed ID: 15996102
    [Abstract] [Full Text] [Related]

  • 15. Enzyme-promoted base flipping controls DNA methylation fidelity.
    Matje DM, Zhou H, Smith DA, Neely RK, Dryden DT, Jones AC, Dahlquist FW, Reich NO.
    Biochemistry; 2013 Mar 12; 52(10):1677-85. PubMed ID: 23409782
    [Abstract] [Full Text] [Related]

  • 16. Active site dynamics of the HhaI methyltransferase: insights from computer simulation.
    Lau EY, Bruice TC.
    J Mol Biol; 1999 Oct 15; 293(1):9-18. PubMed ID: 10512711
    [Abstract] [Full Text] [Related]

  • 17. Protein fragment complementation in M.HhaI DNA methyltransferase.
    Choe W, Chandrasegaran S, Ostermeier M.
    Biochem Biophys Res Commun; 2005 Sep 09; 334(4):1233-40. PubMed ID: 16040000
    [Abstract] [Full Text] [Related]

  • 18. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP, Berlow RB, Watt ED.
    Acc Chem Res; 2008 Feb 09; 41(2):214-21. PubMed ID: 18281945
    [Abstract] [Full Text] [Related]

  • 19. Differences in backbone dynamics of two homologous bacterial albumin-binding modules: implications for binding specificity and bacterial adaptation.
    Johansson MU, Nilsson H, Evenäs J, Forsén S, Drakenberg T, Björck L, Wikström M.
    J Mol Biol; 2002 Mar 08; 316(5):1083-99. PubMed ID: 11884146
    [Abstract] [Full Text] [Related]

  • 20. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.
    Klimasauskas S, Szyperski T, Serva S, Wüthrich K.
    EMBO J; 1998 Jan 02; 17(1):317-24. PubMed ID: 9427765
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.