These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


836 related items for PubMed ID: 17524668

  • 1. Unity and diversity of tonic and phasic executive control components in episodic and working memory.
    Marklund P, Fransson P, Cabeza R, Larsson A, Ingvar M, Nyberg L.
    Neuroimage; 2007 Jul 15; 36(4):1361-73. PubMed ID: 17524668
    [Abstract] [Full Text] [Related]

  • 2. Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding.
    Reynolds JR, Donaldson DI, Wagner AD, Braver TS.
    Neuroimage; 2004 Apr 15; 21(4):1472-83. PubMed ID: 15050572
    [Abstract] [Full Text] [Related]

  • 3. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW, Schneider W.
    Neuroimage; 2007 Aug 01; 37(1):343-60. PubMed ID: 17553704
    [Abstract] [Full Text] [Related]

  • 4. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L, Koppelstaetter F, Delazer M, Siedentopf C, Rhomberg P, Golaszewski S, Felber S, Ischebeck A.
    Neuroimage; 2005 Apr 15; 25(3):888-98. PubMed ID: 15808989
    [Abstract] [Full Text] [Related]

  • 5. Beyond common resources: the cortical basis for resolving task interference.
    Hester R, Murphy K, Garavan H.
    Neuroimage; 2004 Sep 15; 23(1):202-12. PubMed ID: 15325367
    [Abstract] [Full Text] [Related]

  • 6. The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order?
    Majerus S, Poncelet M, Van der Linden M, Albouy G, Salmon E, Sterpenich V, Vandewalle G, Collette F, Maquet P.
    Neuroimage; 2006 Aug 15; 32(2):880-91. PubMed ID: 16702002
    [Abstract] [Full Text] [Related]

  • 7. How specifically do we learn? Imaging the learning of multiplication and subtraction.
    Ischebeck A, Zamarian L, Siedentopf C, Koppelstätter F, Benke T, Felber S, Delazer M.
    Neuroimage; 2006 May 01; 30(4):1365-75. PubMed ID: 16413795
    [Abstract] [Full Text] [Related]

  • 8. Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study.
    Schlösser RG, Koch K, Wagner G, Nenadic I, Roebel M, Schachtzabel C, Axer M, Schultz C, Reichenbach JR, Sauer H.
    Neuropsychologia; 2008 Jan 15; 46(1):336-47. PubMed ID: 17707869
    [Abstract] [Full Text] [Related]

  • 9. Functional magnetic resonance imaging of working memory among multiple sclerosis patients.
    Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA.
    J Neuroimaging; 2004 Apr 15; 14(2):150-7. PubMed ID: 15095561
    [Abstract] [Full Text] [Related]

  • 10. Intensive practice of a cognitive task is associated with enhanced functional integration in schizophrenia.
    Schlösser R, Koch K, Wagner G, Schultz C, Röbel M, Schachtzabel C, Reichenbach JR, Sauer H.
    Psychol Med; 2009 Nov 15; 39(11):1809-19. PubMed ID: 19379537
    [Abstract] [Full Text] [Related]

  • 11. Human cortical circuits for central executive function emerge by theta phase synchronization.
    Mizuhara H, Yamaguchi Y.
    Neuroimage; 2007 May 15; 36(1):232-44. PubMed ID: 17433880
    [Abstract] [Full Text] [Related]

  • 12. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD, Bullmore ET, Sharma T.
    Neuroimage; 2000 Nov 15; 12(5):495-503. PubMed ID: 11034857
    [Abstract] [Full Text] [Related]

  • 13. The neural basis of executive function in working memory: an fMRI study based on individual differences.
    Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H.
    Neuroimage; 2004 Feb 15; 21(2):623-31. PubMed ID: 14980565
    [Abstract] [Full Text] [Related]

  • 14. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 15. On the neural basis of focused and divided attention.
    Nebel K, Wiese H, Stude P, de Greiff A, Diener HC, Keidel M.
    Brain Res Cogn Brain Res; 2005 Dec 23; 25(3):760-76. PubMed ID: 16337110
    [Abstract] [Full Text] [Related]

  • 16. Working memory effects on semantic processing: priming differences in pars orbitalis.
    Sabb FW, Bilder RM, Chou M, Bookheimer SY.
    Neuroimage; 2007 Aug 01; 37(1):311-22. PubMed ID: 17555989
    [Abstract] [Full Text] [Related]

  • 17. Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design.
    Giessing C, Thiel CM, Stephan KE, Rösler F, Fink GR.
    Neuroimage; 2004 Dec 01; 23(4):1370-81. PubMed ID: 15589101
    [Abstract] [Full Text] [Related]

  • 18. Age-related differences in brain activity during verbal recency memory.
    Rajah MN, McIntosh AR.
    Brain Res; 2008 Mar 14; 1199():111-25. PubMed ID: 18282558
    [Abstract] [Full Text] [Related]

  • 19. The synchronization of the human cortical working memory network.
    Newman SD, Just MA, Carpenter PA.
    Neuroimage; 2002 Apr 14; 15(4):810-22. PubMed ID: 11906222
    [Abstract] [Full Text] [Related]

  • 20. An information-processing model of three cortical regions: evidence in episodic memory retrieval.
    Sohn MH, Goode A, Stenger VA, Jung KJ, Carter CS, Anderson JR.
    Neuroimage; 2005 Mar 14; 25(1):21-33. PubMed ID: 15734340
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 42.