These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
363 related items for PubMed ID: 17525338
21. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. J Am Chem Soc; 2017 Feb 08; 139(5):1950-1957. PubMed ID: 28075562 [Abstract] [Full Text] [Related]
22. Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme. Kwak Y, Jiang W, Dassama LM, Park K, Bell CB, Liu LV, Wong SD, Saito M, Kobayashi Y, Kitao S, Seto M, Yoda Y, Alp EE, Zhao J, Bollinger JM, Krebs C, Solomon EI. J Am Chem Soc; 2013 Nov 20; 135(46):17573-84. PubMed ID: 24131208 [Abstract] [Full Text] [Related]
23. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L, Krebs C, Ley BA, Naik S, Huynh BH, Bollinger JM. Biochemistry; 2004 May 25; 43(20):5953-64. PubMed ID: 15147179 [Abstract] [Full Text] [Related]
26. Addition of oxygen to the diiron(II/II) cluster is the slowest step in formation of the tyrosyl radical in the W103Y variant of ribonucleotide reductase protein R2 from mouse. Yun D, Saleh L, García-Serres R, Chicalese BM, An YH, Huynh BH, Bollinger JM. Biochemistry; 2007 Nov 13; 46(45):13067-73. PubMed ID: 17941645 [Abstract] [Full Text] [Related]
32. High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. Leidel N, Popović-Bijelić A, Havelius KG, Chernev P, Voevodskaya N, Gräslund A, Haumann M. Biochim Biophys Acta; 2012 Mar 19; 1817(3):430-44. PubMed ID: 22222354 [Abstract] [Full Text] [Related]
35. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Baldwin J, Krebs C, Saleh L, Stelling M, Huynh BH, Bollinger JM, Riggs-Gelasco P. Biochemistry; 2003 Nov 18; 42(45):13269-79. PubMed ID: 14609338 [Abstract] [Full Text] [Related]
36. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. Seyedsayamdost MR, Yee CS, Reece SY, Nocera DG, Stubbe J. J Am Chem Soc; 2006 Feb 08; 128(5):1562-8. PubMed ID: 16448127 [Abstract] [Full Text] [Related]
37. Direct Measurement of the Radical Translocation Distance in the Class I Ribonucleotide Reductase from Chlamydia trachomatis. Livada J, Martinie RJ, Dassama LM, Krebs C, Bollinger JM, Silakov A. J Phys Chem B; 2015 Oct 29; 119(43):13777-84. PubMed ID: 26087051 [Abstract] [Full Text] [Related]
38. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Yee CS, Seyedsayamdost MR, Chang MC, Nocera DG, Stubbe J. Biochemistry; 2003 Dec 16; 42(49):14541-52. PubMed ID: 14661967 [Abstract] [Full Text] [Related]
39. Variable coordination geometries at the diiron(II) active site of ribonucleotide reductase R2. Voegtli WC, Sommerhalter M, Saleh L, Baldwin J, Bollinger JM, Rosenzweig AC. J Am Chem Soc; 2003 Dec 24; 125(51):15822-30. PubMed ID: 14677973 [Abstract] [Full Text] [Related]
40. EXAFS simulation refinement based on broken-symmetry DFT geometries for the Mn(IV)-Fe(III) center of class I RNR from Chlamydia trachomatis. Luber S, Leung S, Herrmann C, Du WH, Noodleman L, Batista VS. Dalton Trans; 2014 Jan 14; 43(2):576-83. PubMed ID: 24129440 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]