These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


843 related items for PubMed ID: 17532907

  • 1. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
    Graham LE, Datta D, Heller B, Howitt J, Pros D.
    Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Energy storing property of so-called energy-storing prosthetic feet.
    Ehara Y, Beppu M, Nomura S, Kunimi Y, Takahashi S.
    Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524
    [Abstract] [Full Text] [Related]

  • 4. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH, Meier MR, Sessoms PH, Childress DS.
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [Abstract] [Full Text] [Related]

  • 5. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K, Martinet N, Grumillier C, Ghannouchi S, André JM, Paysant J.
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG, Whiting WC, Zernicke RF.
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [Abstract] [Full Text] [Related]

  • 8. Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices.
    Lythgo N, Marmaras B, Connor H.
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1565-70. PubMed ID: 20875515
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mechanical properties of prosthetic limbs: adapting to the patient.
    Klute GK, Kallfelz CF, Czerniecki JM.
    J Rehabil Res Dev; 2001 Oct; 38(3):299-307. PubMed ID: 11440261
    [Abstract] [Full Text] [Related]

  • 14. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP, Klute GK, Neptune RR.
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [Abstract] [Full Text] [Related]

  • 15. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait.
    Agrawal V, Gailey R, O'Toole C, Gaunaurd I, Finnieston A.
    Prosthet Orthot Int; 2013 Oct; 37(5):396-403. PubMed ID: 23364890
    [Abstract] [Full Text] [Related]

  • 16. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD, Klute GK, Neptune RR.
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L, Powers CM, Guiterrez R, Perry J.
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 43.