These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 17537060

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Asymptotically consistent numerical approximation of hemolysis.
    Farinas MI, Garon A, Lacasse D, N'dri D.
    J Biomech Eng; 2006 Oct; 128(5):688-96. PubMed ID: 16995755
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure.
    Ohta Y, Otsuka C, Okamoto H.
    J Artif Organs; 2003 Oct; 6(2):101-5. PubMed ID: 14598110
    [Abstract] [Full Text] [Related]

  • 6. Mechanical degradation of polyacrylamide solutions as a model for flow induced blood damage in artificial organs.
    Pohl M, Wendt MO, Koch B, Vlastos GA.
    Biorheology; 2000 Oct; 37(4):313-24. PubMed ID: 11145077
    [Abstract] [Full Text] [Related]

  • 7. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.
    Mairbäurl H, Ruppe FA, Bärtsch P.
    Med Sci Sports Exerc; 2013 Oct; 45(10):1941-7. PubMed ID: 23575515
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Plasma protective effect on red blood cells exposed to mechanical stress.
    Kameneva MV, Antaki JF, Yeleswarapu KK, Watach MJ, Griffith BP, Borovetz HS.
    ASAIO J; 1997 Oct; 43(5):M571-5. PubMed ID: 9360109
    [Abstract] [Full Text] [Related]

  • 10. A viscoelastic model of shear-induced hemolysis in laminar flow.
    Arwatz G, Smits AJ.
    Biorheology; 2013 Oct; 50(1-2):45-55. PubMed ID: 23619152
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ, Nam JH, Lee YJ, Shin S.
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y, Schmid-Schönbein GW.
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [Abstract] [Full Text] [Related]

  • 16. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Oct; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 17. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies.
    Grigioni M, Daniele C, Morbiducci U, D'Avenio G, Di Benedetto G, Barbaro V.
    Artif Organs; 2004 May; 28(5):467-75. PubMed ID: 15113341
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator.
    Watanabe N, Arakawa Y, Sou A, Kataoka H, Ohuchi K, Fujimoto T, Takatani S.
    Physiol Meas; 2007 May; 28(5):531-45. PubMed ID: 17470986
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.