These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Conservative and variable regions of homologous snake phospholipases A2 sequences: prediction of the taxon-specific peptides structure. Kostetsky PV, Arkhipova SF, Vladimirova RR. J Protein Chem; 1991 Dec; 10(6):593-601. PubMed ID: 1815585 [Abstract] [Full Text] [Related]
3. [Graphic identification of conservative and variable segments in the amino acid sequences of homologous proteins]. Kostetskiĭ PV, Vladimirova RR. Bioorg Khim; 1989 Nov; 15(11):1573-6. PubMed ID: 2624595 [Abstract] [Full Text] [Related]
4. [Analysis of the amino acid sequence of homologous proteins on the personal computer "Iskra-226"]. Kostetskiĭ PV, Pozhil'tsova OI, Ul'iashin VV. Mol Biol (Mosk); 1990 Nov; 24(6):1590-6. PubMed ID: 2094808 [Abstract] [Full Text] [Related]
5. Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Huang P, Mackessy SP. Toxicon; 2004 Jul; 44(1):27-36. PubMed ID: 15225559 [Abstract] [Full Text] [Related]
6. Identification of significant conservative and variable regions in homologous protein sequences. Kostetsky P, Vladimirova R. Biochimie; 1990 Apr; 72(4):295-7. PubMed ID: 2166594 [Abstract] [Full Text] [Related]
7. The significant conservative and variable regions of the homologous protein sequences. Kostetsky PV, Vladimirova RR. J Biomol Struct Dyn; 1992 Jun; 9(6):1061-72. PubMed ID: 1322142 [Abstract] [Full Text] [Related]
10. Sequences, geographic variations and molecular phylogeny of venom phospholipases and threefinger toxins of eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2. Tsai IH, Tsai HY, Saha A, Gomes A. FEBS J; 2007 Jan; 274(2):512-25. PubMed ID: 17166178 [Abstract] [Full Text] [Related]
11. Structural and pharmacological features of phospholipases A2 from snake venoms. de Paula RC, Castro HC, Rodrigues CR, Melo PA, Fuly AL. Protein Pept Lett; 2009 Jan; 16(8):899-907. PubMed ID: 19689416 [Abstract] [Full Text] [Related]
15. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. Lynch VJ. BMC Evol Biol; 2007 Jan 18; 7():2. PubMed ID: 17233905 [Abstract] [Full Text] [Related]
16. Dissection and sequence analysis of phospholipases A2. Heinrikson RL. Methods Enzymol; 1991 Jan 18; 197():201-14. PubMed ID: 2051914 [No Abstract] [Full Text] [Related]
17. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. Kini RM, Chan YM. J Mol Evol; 1999 Feb 18; 48(2):125-32. PubMed ID: 9929380 [Abstract] [Full Text] [Related]
18. Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): Insights into the structure-function relationships of snake venom toxins. Oliveira A, Bleicher L, Schrago CG, Silva Junior FP. Toxicon; 2018 May 18; 146():50-60. PubMed ID: 29608922 [Abstract] [Full Text] [Related]
20. Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Slowinski JB, Knight A, Rooney AP. Mol Phylogenet Evol; 1997 Dec 18; 8(3):349-62. PubMed ID: 9417893 [Abstract] [Full Text] [Related] Page: [Next] [New Search]