These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 17542560
1. An aggregation-prone intermediate species is present in the unfolding pathway of the monomeric portal protein of bacteriophage P22: implications for portal assembly. Braga CA, Carvalho D, Lara FA, Cortines JR, Moore SD, Prevelige PE, Foguel D. Biochemistry; 2007 Jun 26; 46(25):7353-64. PubMed ID: 17542560 [Abstract] [Full Text] [Related]
2. Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4. Olia AS, Al-Bassam J, Winn-Stapley DA, Joss L, Casjens SR, Cingolani G. J Mol Biol; 2006 Oct 20; 363(2):558-76. PubMed ID: 16970964 [Abstract] [Full Text] [Related]
3. Thermal unfolding of dodecameric glutamine synthetase: inhibition of aggregation by urea. Nosworthy NJ, Ginsburg A. Protein Sci; 1997 Dec 20; 6(12):2617-23. PubMed ID: 9416610 [Abstract] [Full Text] [Related]
4. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S, Dubey VK, Pande M, Ambasht PK, Jagannadham MV. Biochimie; 2007 Nov 20; 89(11):1416-24. PubMed ID: 17658212 [Abstract] [Full Text] [Related]
5. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22. Rodríguez-Casado A, Thomas GJ. Biochemistry; 2003 Apr 01; 42(12):3437-45. PubMed ID: 12653547 [Abstract] [Full Text] [Related]
6. Role of gene 10 protein in the hierarchical assembly of the bacteriophage P22 portal vertex structure. Olia AS, Bhardwaj A, Joss L, Casjens S, Cingolani G. Biochemistry; 2007 Jul 31; 46(30):8776-84. PubMed ID: 17620013 [Abstract] [Full Text] [Related]
7. Structural transformations accompanying the assembly of bacteriophage P22 portal protein rings in vitro. Moore SD, Prevelige PE. J Biol Chem; 2001 Mar 02; 276(9):6779-88. PubMed ID: 11092883 [Abstract] [Full Text] [Related]
8. Bacteriophage p22 portal vertex formation in vivo. Moore SD, Prevelige PE. J Mol Biol; 2002 Feb 01; 315(5):975-94. PubMed ID: 11827470 [Abstract] [Full Text] [Related]
9. Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Teschke CM. Biochemistry; 1999 Mar 09; 38(10):2873-81. PubMed ID: 10074339 [Abstract] [Full Text] [Related]
10. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Patra AK, Udgaonkar JB. Biochemistry; 2007 Oct 23; 46(42):11727-43. PubMed ID: 17902706 [Abstract] [Full Text] [Related]
11. Structural transitions in the scaffolding and coat proteins of P22 virus during assembly and disassembly. Tuma R, Prevelige PE, Thomas GJ. Biochemistry; 1996 Apr 09; 35(14):4619-27. PubMed ID: 8605213 [Abstract] [Full Text] [Related]
12. Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature. Bonafe CF, Vital CM, Telles RC, Gonçalves MC, Matsuura MS, Pessine FB, Freitas DR, Vega J. Biochemistry; 1998 Aug 04; 37(31):11097-105. PubMed ID: 9693006 [Abstract] [Full Text] [Related]
13. High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure. Gorovits BM, Horowitz PM. Biochemistry; 1998 Apr 28; 37(17):6132-5. PubMed ID: 9558352 [Abstract] [Full Text] [Related]
14. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway. Mu H, Zhou SM, Yang JM, Meng FG, Park YD. Int J Biol Macromol; 2007 Oct 01; 41(4):439-46. PubMed ID: 17673285 [Abstract] [Full Text] [Related]
15. A stable intermediate in the equilibrium unfolding of Escherichia coli citrate synthase. Ayed A, Duckworth HW. Protein Sci; 1999 May 01; 8(5):1116-26. PubMed ID: 10338022 [Abstract] [Full Text] [Related]
16. Urea-induced sequential unfolding of fibronectin: a fluorescence spectroscopy and circular dichroism study. Patel S, Chaffotte AF, Goubard F, Pauthe E. Biochemistry; 2004 Feb 17; 43(6):1724-35. PubMed ID: 14769050 [Abstract] [Full Text] [Related]
17. Tetrameric N(5)-(L-1-carboxyethyl)-L-ornithine synthase: guanidine. HCl-induced unfolding and a low temperature requirement for refolding. Ruvinov SB, Thompson J, Sackett DL, Ginsburg A. Arch Biochem Biophys; 1999 Nov 01; 371(1):115-23. PubMed ID: 10525296 [Abstract] [Full Text] [Related]
18. Influence of fluoro, chloro and alkyl alcohols on the folding pathway of human serum albumin. Kumar Y, Muzammil S, Tayyab S. J Biochem; 2005 Oct 01; 138(4):335-41. PubMed ID: 16272127 [Abstract] [Full Text] [Related]
19. The unfolding pathway for Apo Escherichia coli aspartate aminotransferase is dependent on the choice of denaturant. Deu E, Kirsch JF. Biochemistry; 2007 May 15; 46(19):5810-8. PubMed ID: 17425331 [Abstract] [Full Text] [Related]
20. The proapoptotic protein Smac/DIABLO dimer has the highest stability as measured by pressure and urea denaturation. Gonçalves RB, Sanches D, Souza TL, Silva JL, Oliveira AC. Biochemistry; 2008 Mar 25; 47(12):3832-41. PubMed ID: 18307314 [Abstract] [Full Text] [Related] Page: [Next] [New Search]