These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


637 related items for PubMed ID: 17545867

  • 1. Equivalent noise level generated by drilling onto the ossicular chain as measured by laser Doppler vibrometry: a temporal bone study.
    Jiang D, Bibas A, Santuli C, Donnelly N, Jeronimidis G, O'Connor AF.
    Laryngoscope; 2007 Jun; 117(6):1040-5. PubMed ID: 17545867
    [Abstract] [Full Text] [Related]

  • 2. Drill-induced Cochlear Injury During Otologic Surgery: Intracochlear Pressure Evidence of Acoustic Trauma.
    Banakis Hartl RM, Mattingly JK, Greene NT, Farrell NF, Gubbels SP, Tollin DJ.
    Otol Neurotol; 2017 Aug; 38(7):938-947. PubMed ID: 28598950
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of the noise generated by otological electrical drills and suction during cadaver surgery.
    Yin X, Strömberg AK, Duan M.
    Acta Otolaryngol; 2011 Nov; 131(11):1132-5. PubMed ID: 21756022
    [Abstract] [Full Text] [Related]

  • 4. Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation.
    Pau HW, Just T, Bornitz M, Lasurashvilli N, Zahnert T.
    Laryngoscope; 2007 Mar; 117(3):535-40. PubMed ID: 17334318
    [Abstract] [Full Text] [Related]

  • 5. Implications of sound levels generated by otologic devices.
    Michaelides EM, Kartush JM.
    Otolaryngol Head Neck Surg; 2001 Oct; 125(4):361-3. PubMed ID: 11593172
    [Abstract] [Full Text] [Related]

  • 6. Acoustic trauma from the bone cutting burr.
    Helms J.
    J Laryngol Otol; 1976 Dec; 90(12):1143-9. PubMed ID: 1003040
    [Abstract] [Full Text] [Related]

  • 7. Techniques to improve the efficiency of a middle ear implant: effect of different methods of coupling to the ossicular chain.
    Devèze A, Koka K, Tringali S, Jenkins HA, Tollin DJ.
    Otol Neurotol; 2013 Jan; 34(1):158-66. PubMed ID: 23196747
    [Abstract] [Full Text] [Related]

  • 8. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H, Salcher R, Schwab B, Lenarz T.
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [Abstract] [Full Text] [Related]

  • 9. Digital spectral analysis of the drill-bone acoustic interface during temporal bone dissection: a qualitative cadaveric pilot study.
    Shine NP, O'Sullivan PG, Connell J, Rulikowski P, Barrett J.
    Otol Neurotol; 2006 Aug; 27(5):728-33. PubMed ID: 16819310
    [Abstract] [Full Text] [Related]

  • 10. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K, Holland NJ, Lupo JE, Jenkins HA, Tollin DJ.
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [Abstract] [Full Text] [Related]

  • 11. Vibration-induced hearing loss: mechanical and physiological aspects.
    Sutinen P, Zou J, Hunter LL, Toppila E, Pyykkö I.
    Otol Neurotol; 2007 Feb; 28(2):171-7. PubMed ID: 17255883
    [Abstract] [Full Text] [Related]

  • 12. Investigation of noise levels generated by otologic drills.
    Dalchow CV, Hagemeier KC, Muenscher A, Knecht R, Kameier F.
    Eur Arch Otorhinolaryngol; 2013 Feb; 270(2):505-10. PubMed ID: 22526576
    [Abstract] [Full Text] [Related]

  • 13. Creation of an incus recess for a middle-ear microphone using a drill or laser ablation: a comparison of equivalent noise level and middle ear transfer function.
    Morse RP, Mitchell-Innes A, Prokopiou AN, Irving RM, Begg PA.
    Eur Arch Otorhinolaryngol; 2023 Feb; 280(2):661-669. PubMed ID: 35834014
    [Abstract] [Full Text] [Related]

  • 14. Variables affecting the drill-generated noise levels in ear surgery.
    Kylén P, Stjernvall JE, Arlinger S.
    Acta Otolaryngol; 1977 Feb; 84(3-4):252-9. PubMed ID: 906818
    [Abstract] [Full Text] [Related]

  • 15. A new implantable middle ear hearing device for mixed hearing loss: A feasibility study in human temporal bones.
    Huber AM, Ball GR, Veraguth D, Dillier N, Bodmer D, Sequeira D.
    Otol Neurotol; 2006 Dec; 27(8):1104-9. PubMed ID: 17031322
    [Abstract] [Full Text] [Related]

  • 16. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M, Lally J, Adams JK, Higgins S, Ahmed M, Aden J, Esquivel C, Spear SA.
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [Abstract] [Full Text] [Related]

  • 17. [Noise level measurements of the air noise during drilling and grinding on the fresh isolated temporal bone (author's transl)].
    Paulsen K, Vietor K.
    Laryngol Rhinol Otol (Stuttg); 1975 Oct; 54(10):824-34. PubMed ID: 129600
    [Abstract] [Full Text] [Related]

  • 18. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process.
    Mlynski R, Dalhoff E, Heyd A, Wildenstein D, Rak K, Radeloff A, Hagen R, Gummer AW, Schraven SP.
    Otol Neurotol; 2015 Sep; 36(8):1390-8. PubMed ID: 26247138
    [Abstract] [Full Text] [Related]

  • 19. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP, Grant IL, Mills DM.
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [Abstract] [Full Text] [Related]

  • 20. Live recordings of sound levels during the use of powered instruments in ENT surgery.
    Prasad KR, Reddy KT.
    J Laryngol Otol; 2003 Jul; 117(7):532-5. PubMed ID: 12901806
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.