These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 17552697

  • 1. k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics.
    Cox BT, Kara S, Arridge SR, Beard PC.
    J Acoust Soc Am; 2007 Jun; 121(6):3453-64. PubMed ID: 17552697
    [Abstract] [Full Text] [Related]

  • 2. Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media.
    Cox BT, Treeby BE.
    IEEE Trans Med Imaging; 2010 Feb; 29(2):387-96. PubMed ID: 19887310
    [Abstract] [Full Text] [Related]

  • 3. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media.
    Veres IA.
    Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266
    [Abstract] [Full Text] [Related]

  • 4. A first-order k-space model for elastic wave propagation in heterogeneous media.
    Firouzi K, Cox BT, Treeby BE, Saffari N.
    J Acoust Soc Am; 2012 Sep; 132(3):1271-83. PubMed ID: 22978855
    [Abstract] [Full Text] [Related]

  • 5. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL, Li PC.
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [Abstract] [Full Text] [Related]

  • 6. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE, Jaros J, Rendell AP, Cox BT.
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [Abstract] [Full Text] [Related]

  • 7. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J, Delpy D, Elwell C, Beard P.
    Phys Med Biol; 2007 Jan 07; 52(1):141-68. PubMed ID: 17183133
    [Abstract] [Full Text] [Related]

  • 8. Theory and analysis of frequency-domain photoacoustic tomography.
    Baddour N.
    J Acoust Soc Am; 2008 May 07; 123(5):2577-90. PubMed ID: 18529177
    [Abstract] [Full Text] [Related]

  • 9. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE, Cox BT.
    J Acoust Soc Am; 2010 May 07; 127(5):2741-48. PubMed ID: 21117722
    [Abstract] [Full Text] [Related]

  • 10. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA.
    J Acoust Soc Am; 2008 Sep 07; 124(3):1452-64. PubMed ID: 19045637
    [Abstract] [Full Text] [Related]

  • 11. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X, Borup D, Wiskin J, Berggren M, Johnson SA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999 Sep 07; 46(1):14-23. PubMed ID: 18238394
    [Abstract] [Full Text] [Related]

  • 12. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL, Li PC.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May 07; 56(5):1104-12. PubMed ID: 19473928
    [Abstract] [Full Text] [Related]

  • 13. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J, Yousuff Hussaini M, Lee S.
    J Acoust Soc Am; 2009 Feb 07; 125(2):664-75. PubMed ID: 19206844
    [Abstract] [Full Text] [Related]

  • 14. Photoacoustic tomography with a single detector in a reverberant cavity.
    Cox BT, Beard PC.
    J Acoust Soc Am; 2009 Mar 07; 125(3):1426-36. PubMed ID: 19275300
    [Abstract] [Full Text] [Related]

  • 15. Modeling a surface-mounted Lamb wave emission-reception system: applications to structural health monitoring.
    Moulin E, Grondel S, Assaad J, Duquenne L.
    J Acoust Soc Am; 2008 Dec 07; 124(6):3521-7. PubMed ID: 19206781
    [Abstract] [Full Text] [Related]

  • 16. A k-space method for coupled first-order acoustic propagation equations.
    Tabei M, Mast TD, Waag RC.
    J Acoust Soc Am; 2002 Jan 07; 111(1 Pt 1):53-63. PubMed ID: 11831824
    [Abstract] [Full Text] [Related]

  • 17. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R.
    J Acoust Soc Am; 2008 Oct 07; 124(4):1930-40. PubMed ID: 19062832
    [Abstract] [Full Text] [Related]

  • 18. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y, Cleveland RO.
    J Acoust Soc Am; 2007 Sep 07; 122(3):1352. PubMed ID: 17927398
    [Abstract] [Full Text] [Related]

  • 19. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C.
    J Acoust Soc Am; 2008 Sep 07; 124(3):1430-41. PubMed ID: 19045635
    [Abstract] [Full Text] [Related]

  • 20. Efficient absorbing boundary conditions for Biot's equations in time-harmonic finite element applications.
    Wahl R, Spies M, Diebels S.
    J Acoust Soc Am; 2008 Mar 07; 123(3):1347-51. PubMed ID: 18345823
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.