These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 17554525
1. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Rother M, Oelgeschläger E, Metcalf WM. Arch Microbiol; 2007 Nov; 188(5):463-72. PubMed ID: 17554525 [Abstract] [Full Text] [Related]
2. Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl coenzyme A synthase in Methanosarcina acetivorans. Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M. J Bacteriol; 2012 Oct; 194(19):5377-87. PubMed ID: 22865842 [Abstract] [Full Text] [Related]
3. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Oelgeschläger E, Rother M. Mol Microbiol; 2009 Jun; 72(5):1260-72. PubMed ID: 19432805 [Abstract] [Full Text] [Related]
4. Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy. Biester A, Grahame DA, Drennan CL. Proc Natl Acad Sci U S A; 2024 Oct 08; 121(41):e2410995121. PubMed ID: 39361653 [Abstract] [Full Text] [Related]
5. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, Karger BL, Ferry JG. Proc Natl Acad Sci U S A; 2006 Nov 21; 103(47):17921-6. PubMed ID: 17101988 [Abstract] [Full Text] [Related]
6. Different modes of carbon monoxide binding to acetyl-CoA synthase and the role of a conserved phenylalanine in the coordination environment of nickel. Gencic S, Kelly K, Ghebreamlak S, Duin EC, Grahame DA. Biochemistry; 2013 Mar 12; 52(10):1705-16. PubMed ID: 23394607 [Abstract] [Full Text] [Related]
7. Role of a putative tungsten-dependent formylmethanofuran dehydrogenase in Methanosarcina acetivorans. Matschiavelli N, Rother M. Arch Microbiol; 2015 Apr 12; 197(3):379-88. PubMed ID: 25503744 [Abstract] [Full Text] [Related]
8. Development of a plasmid-mediated reporter system for in vivo monitoring of gene expression in the archaeon Methanosarcina acetivorans. Apolinario EE, Jackson KM, Sowers KR. Appl Environ Microbiol; 2005 Aug 12; 71(8):4914-8. PubMed ID: 16085896 [Abstract] [Full Text] [Related]
9. Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans. Kliefoth M, Langer JD, Matschiavelli N, Oelgeschläger E, Rother M. Arch Microbiol; 2012 Feb 12; 194(2):75-85. PubMed ID: 21735228 [Abstract] [Full Text] [Related]
10. Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/acetyl-CoA synthase complex from Methanosarcina thermophila. Evidence that the beta subunit catalyzes C-C and C-S bond cleavage. Murakami E, Ragsdale SW. J Biol Chem; 2000 Feb 18; 275(7):4699-707. PubMed ID: 10671500 [Abstract] [Full Text] [Related]
11. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. Rohlin L, Gunsalus RP. BMC Microbiol; 2010 Feb 23; 10():62. PubMed ID: 20178638 [Abstract] [Full Text] [Related]
12. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum. Carlson ED, Papoutsakis ET. Appl Environ Microbiol; 2017 Aug 15; 83(16):. PubMed ID: 28625981 [Abstract] [Full Text] [Related]
13. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans. Schöne C, Poehlein A, Rother M. Appl Environ Microbiol; 2023 Jul 26; 89(7):e0216122. PubMed ID: 37347168 [Abstract] [Full Text] [Related]
14. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina. Lieber DJ, Catlett J, Madayiputhiya N, Nandakumar R, Lopez MM, Metcalf WW, Buan NR. PLoS One; 2014 Jul 26; 9(9):e107563. PubMed ID: 25232733 [Abstract] [Full Text] [Related]
15. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG. J Bacteriol; 2006 Jan 26; 188(2):702-10. PubMed ID: 16385060 [Abstract] [Full Text] [Related]
16. Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. Oelgeschläger E, Rother M. FEMS Microbiol Lett; 2009 Mar 26; 292(2):254-60. PubMed ID: 19191870 [Abstract] [Full Text] [Related]
17. Tight coupling of partial reactions in the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex from Methanosarcina thermophila: acetyl C-C bond fragmentation at the a cluster promoted by protein conformational changes. Gencic S, Duin EC, Grahame DA. J Biol Chem; 2010 May 14; 285(20):15450-15463. PubMed ID: 20202935 [Abstract] [Full Text] [Related]
18. MreA functions in the global regulation of methanogenic pathways in Methanosarcina acetivorans. Reichlen MJ, Vepachedu VR, Murakami KS, Ferry JG. mBio; 2012 May 14; 3(4):e00189-12. PubMed ID: 22851658 [Abstract] [Full Text] [Related]