These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Genetic influences on susceptibility of the auditory system to aging and environmental factors. Li HS. Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615 [Abstract] [Full Text] [Related]
7. Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Kim S, Frisina DR, Frisina RD. Audiol Neurootol; 2002; 7(6):348-57. PubMed ID: 12401966 [Abstract] [Full Text] [Related]
8. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. Sun XM. J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382 [Abstract] [Full Text] [Related]
10. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays. Bhagat SP, Kilgore C. Neurosci Lett; 2014 Jan 24; 559():132-5. PubMed ID: 24333175 [Abstract] [Full Text] [Related]
11. Serotonin 2B receptor: upregulated with age and hearing loss in mouse auditory system. Tadros SF, D'Souza M, Zettel ML, Zhu X, Lynch-Erhardt M, Frisina RD. Neurobiol Aging; 2007 Jul 24; 28(7):1112-23. PubMed ID: 16822592 [Abstract] [Full Text] [Related]
12. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease. Stuart A, Preast JL. Ear Hear; 2012 Jul 24; 33(3):421-9. PubMed ID: 22246207 [Abstract] [Full Text] [Related]
14. The effects of aging on evoked otoacoustic emissions and efferent suppression of transient evoked otoacoustic emissions. Keppler H, Dhooge I, Corthals P, Maes L, D'haenens W, Bockstael A, Philips B, Swinnen F, Vinck B. Clin Neurophysiol; 2010 Mar 24; 121(3):359-65. PubMed ID: 20005159 [Abstract] [Full Text] [Related]
15. Transient otoacoustic emissions in the detection of olivocochlear bundle maturation. Gkoritsa E, Tsakanikos M, Korres S, Dellagrammaticas H, Apostolopoulos N, Ferekidis E. Int J Pediatr Otorhinolaryngol; 2006 Apr 24; 70(4):671-6. PubMed ID: 16198429 [Abstract] [Full Text] [Related]
17. Effect of age on speech recognition in noise and on contralateral transient evoked otoacoustic emission suppression. Yilmaz ST, Sennaroğlu G, Sennaroğlu L, Köse SK. J Laryngol Otol; 2007 Nov 24; 121(11):1029-34. PubMed ID: 17381896 [Abstract] [Full Text] [Related]
18. Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms. Wagner W, Heyd A. Otol Neurotol; 2011 Oct 24; 32(8):1379-88. PubMed ID: 21921859 [Abstract] [Full Text] [Related]
19. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences. Willott JF, Bross L. J Comp Neurol; 2004 May 03; 472(3):358-70. PubMed ID: 15065130 [Abstract] [Full Text] [Related]
20. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state? Abel C, Wittekindt A, Kössl M. J Neurophysiol; 2009 May 03; 101(5):2362-71. PubMed ID: 19279155 [Abstract] [Full Text] [Related] Page: [Next] [New Search]