These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
790 related items for PubMed ID: 17560530
1. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. She C, Liu J, Diao Y, Hu Z, Song Y. J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530 [Abstract] [Full Text] [Related]
2. The use of repetitive DNA in cytogenetic studies of plant sex chromosomes. Kazama Y, Matsunaga S. Cytogenet Genome Res; 2008 May; 120(3-4):247-54. PubMed ID: 18504354 [Abstract] [Full Text] [Related]
3. The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A. wakegi. Shibata F, Hizume M. Chromosoma; 2002 Sep; 111(3):184-91. PubMed ID: 12355208 [Abstract] [Full Text] [Related]
4. Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods. Walling JG, Pires JC, Jackson SA. Methods Enzymol; 2005 Sep; 395():443-60. PubMed ID: 15865979 [Abstract] [Full Text] [Related]
5. Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding. Zhou JP, Yang ZJ, Li GR, Liu C, Ren ZL. J Integr Plant Biol; 2008 Apr; 50(4):452-6. PubMed ID: 18713379 [Abstract] [Full Text] [Related]
6. Whole-comparative genomic hybridization in domestic sheep (Ovis aries) breeds. Dávila-Rodríguez MI, Cortés-Gutiérrez EI, López-Fernández C, Pita M, Mezzanotte R, Gosálvez J. Cytogenet Genome Res; 2009 Apr; 124(1):19-26. PubMed ID: 19372665 [Abstract] [Full Text] [Related]
7. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants. She CW, Liu JY, Song YC. Biotech Histochem; 2006 Apr; 81(1):13-21. PubMed ID: 16760123 [Abstract] [Full Text] [Related]
8. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. Wetzel JB, Rayburn AL. Cytometry; 2000 Sep 01; 41(1):36-40. PubMed ID: 10942894 [Abstract] [Full Text] [Related]
9. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Raskina O, Barber JC, Nevo E, Belyayev A. Cytogenet Genome Res; 2008 Sep 01; 120(3-4):351-7. PubMed ID: 18504364 [Abstract] [Full Text] [Related]
10. Superior: a novel repetitive DNA element dispersed in the rye genome. Tomita M, Kuramochi M, Iwata S. Cytogenet Genome Res; 2009 Sep 01; 125(4):306-20. PubMed ID: 19864894 [Abstract] [Full Text] [Related]
11. Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Maluszynska J, Hasterok R. Cytogenet Genome Res; 2005 Sep 01; 109(1-3):310-4. PubMed ID: 15753591 [Abstract] [Full Text] [Related]
12. Centromeric distribution of 350-family in Dasypyrum villosum and its application to identifying Dasypyrum chromatin in the wheat genome. Yuan WY, Tomita M. Hereditas; 2009 May 01; 146(2):58-66. PubMed ID: 19490166 [Abstract] [Full Text] [Related]
13. Distribution of repetitive DNAs and the hybrid origin of the red vizcacha rat (Octodontidae). Suárez-Villota EY, Vargas RA, Marchant CL, Torres JE, Köhler N, Núñez JJ, de la Fuente R, Page J, Gallardo MH. Genome; 2012 Feb 01; 55(2):105-17. PubMed ID: 22272977 [Abstract] [Full Text] [Related]
14. Cytogenetic comparisons between A and G genomes in Oryza using genomic in situ hybridization. Xiong ZY, Tan GX, He GY, He GC, Song YC. Cell Res; 2006 Mar 01; 16(3):260-6. PubMed ID: 16541124 [Abstract] [Full Text] [Related]
15. [The production and multi-color genomic in situ hybridization identification of maize-Z. perennis substituted material]. Tang QL, Li WC, Song YC, Rong TZ, Pan GT, Huang YB, Cao MJ. Yi Chuan Xue Bao; 2004 Apr 01; 31(4):340-4. PubMed ID: 15487500 [Abstract] [Full Text] [Related]
16. Molecular characterisation and chromosomal localisation of a telomere-like repetitive DNA sequence highly enriched in the C genome of Brassica. Galvão Bezerra dos Santos K, Becker HC, Ecke W, Bellin U. Cytogenet Genome Res; 2007 Apr 01; 119(1-2):147-53. PubMed ID: 18160795 [Abstract] [Full Text] [Related]
17. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Hizume M, Shibata F, Maruyama Y, Kondo T. Chromosoma; 2001 Sep 01; 110(5):345-51. PubMed ID: 11685534 [Abstract] [Full Text] [Related]
18. Fluorescent in situ hybridization to detect transgene integration into plant genomes. Schwarzacher T. Methods Mol Biol; 2009 Sep 01; 478():227-46. PubMed ID: 19009449 [Abstract] [Full Text] [Related]
19. A and C genome distinction and chromosome identification in brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ. Genetics; 2008 Dec 01; 180(4):1849-57. PubMed ID: 18845839 [Abstract] [Full Text] [Related]