These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 17560898

  • 1. Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy.
    El Kirat K, Morandat S.
    Biochim Biophys Acta; 2007 Sep; 1768(9):2300-9. PubMed ID: 17560898
    [Abstract] [Full Text] [Related]

  • 2. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy.
    Morandat S, El Kirat K.
    Langmuir; 2006 Jun 20; 22(13):5786-91. PubMed ID: 16768509
    [Abstract] [Full Text] [Related]

  • 3. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA, Cover TL, Henderson RM, Edwardson JM.
    Biochem J; 2004 Aug 01; 381(Pt 3):911-7. PubMed ID: 15128269
    [Abstract] [Full Text] [Related]

  • 4. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol.
    Mattei B, França AD, Riske KA.
    Langmuir; 2015 Aug 01; 31(1):378-86. PubMed ID: 25474726
    [Abstract] [Full Text] [Related]

  • 5. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.
    Shaikh SR, Dumaual AC, Castillo A, LoCascio D, Siddiqui RA, Stillwell W, Wassall SR.
    Biophys J; 2004 Sep 01; 87(3):1752-66. PubMed ID: 15345554
    [Abstract] [Full Text] [Related]

  • 6. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
    Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA.
    Langmuir; 2017 Jul 25; 33(29):7312-7321. PubMed ID: 28474888
    [Abstract] [Full Text] [Related]

  • 7. Use of cyclodextrin for AFM monitoring of model raft formation.
    Giocondi MC, Milhiet PE, Dosset P, Le Grimellec C.
    Biophys J; 2004 Feb 25; 86(2):861-9. PubMed ID: 14747321
    [Abstract] [Full Text] [Related]

  • 8. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R, Li L, Qiu F, Yang Y.
    J Phys Chem B; 2011 May 19; 115(19):5923-9. PubMed ID: 21526782
    [Abstract] [Full Text] [Related]

  • 9. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N, Okazaki H, Nomura K, Murata M.
    Chem Phys Lipids; 2011 Jul 19; 164(5):401-8. PubMed ID: 21664344
    [Abstract] [Full Text] [Related]

  • 10. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions.
    Dols-Perez A, Fumagalli L, Gomila G.
    Colloids Surf B Biointerfaces; 2014 Apr 01; 116():295-302. PubMed ID: 24508809
    [Abstract] [Full Text] [Related]

  • 11. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ, Vidal A, Simon SA.
    Biophys J; 2003 Sep 01; 85(3):1656-66. PubMed ID: 12944280
    [Abstract] [Full Text] [Related]

  • 12. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 13. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha, Sawatzki P, Kolter T, Bittman R, London E.
    Biochim Biophys Acta; 2007 Sep 01; 1768(9):2205-12. PubMed ID: 17574203
    [Abstract] [Full Text] [Related]

  • 14. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE, Alattia JR, Verity JE, Privé GG, Yip CM.
    J Struct Biol; 2006 Apr 01; 154(1):42-58. PubMed ID: 16459101
    [Abstract] [Full Text] [Related]

  • 15. Structural diversity of sphingomyelin microdomains.
    Giocondi MC, Boichot S, Plénat T, Le Grimellec CC.
    Ultramicroscopy; 2004 Aug 01; 100(3-4):135-43. PubMed ID: 15231303
    [Abstract] [Full Text] [Related]

  • 16. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR, De Oliveira Carvalho P, Riske KA, Barbosa Rde M, De Paula E, Domingues CC.
    Mol Membr Biol; 2014 Sep 01; 31(6):195-205. PubMed ID: 25222860
    [Abstract] [Full Text] [Related]

  • 17. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
    Heerklotz H, Szadkowska H, Anderson T, Seelig J.
    J Mol Biol; 2003 Jun 13; 329(4):793-9. PubMed ID: 12787678
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine.
    Pandit SA, Jakobsson E, Scott HL.
    Biophys J; 2004 Nov 13; 87(5):3312-22. PubMed ID: 15339797
    [Abstract] [Full Text] [Related]

  • 20. Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension.
    Mattei B, Lira RB, Perez KR, Riske KA.
    Chem Phys Lipids; 2017 Jan 13; 202():28-37. PubMed ID: 27913102
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.